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FOREWORD 

Epidemiological studies provide the only definitive information on the degree of 
cancer risk to man. Since malignant diseases are clearly of multifactorial origin, their 
investigation in man has become increasingly complex, and epidemiological and 
statistical studies on cancer require a correspondingly complex and rigorous 
methodology. 

The past 15 years have seen rapid developments of the analytic tools available to 
epidemiologists. These advances now permit a more flexible and quantitative approach 
to the use of epidemiological data, and thus greatly enhance the utility of such data for 
the primary purpose of disease prevention. For society now expects that if preventive 
measures are to be introduced, then quantitative assessments of the expected benefit 
should be available. The first volume in this series focused on case-control studies, 
reflecting the concentration on this approach in the 1970s for the identification of 
cancer hazards. Attention has recently turned to the more basic line of attack provided 
by cohort studies, and the more general modelling of risk that can ensue. This second 
volume gives an authoritative account of the methods now available for the 
interpretation of the results from this type of study. 

The two volumes together give a comprehensive development of the principles and 
concepts underlying the design and analysis of both types of study currently used in 
analytic cancer epidemiology, and a detailed treatment of the quantitative methods 
now available. The IARC hopes that this text will be of value to the epidemiological 
and statistical community for many years to come. 

L. Tomatis, MD 
Director 
International Agency 
for Research on Cancer 



PREFACE 

Long-term follow-up (cohort) studies of human populations, particularly of industrial 
workers, of patients treated with radiation and cytotoxic chemotherapy, and of victims 
of nuclear and other disasters, have provided the most convincing evidence of the link 
between exposure to specific environmental agents and cancer occurrence. Of the 
chemicals and industrial processes for which working groups convened by the IARC 
have decided that there is 'sufficient evidence' of human carcinogenicity, cohort studies 
provided the definitive evidence in the great majority of cases. In the studies carried 
out in the 1950s and 1960s, high risks were associated with specific exposures. 
Relatively simple statistical methods were sufficient to demonstrate the effect, and the 
finer quantitative features of the relationship were not emphasized. It was not 
uncommon for reports of occupational hazards to be based primarily on the 
computation of standardized death rates or mortality ratios (SMRs) for a few causes of 
death, with virtually no attention paid to internal comparisons among differentially 
exposed workers. Since then, the picture has changed. More attention is now paid to 
the quantification of risk and the use of more refined dose-response models. Interest 
has also turned to a wider range of exposures and the interplay between physiological 
measures of nutritional status, dietary factors and other variables of modes of life. 
Mdtivariate methods are then necessary, often making use of serial measurements on 
the same individuals. 

Increasingly, modern concepts of statistical inference and modelling are being used 
to maximize the information obtainable from these major endeavours and to provide 
the most precise estimates possible of quantitative risk. Indeed, some cohort studies 
have stimulated the development of new statistical methods of particular relevance to 
this field. 

The primary purpose of this monograph is to bring together in one place the 
statistical developments that have taken place during the past few years that are of 
relevance to the design and analysis of cohort studies, and to illustrate their application 
to several sets of data of importance in the field of cancer epidemiology. We hope to 
present these new statistical methods in such a way that epidemiologists and other 
research workers without extensive statistical training can appreciate the possibilities 
they offer and, in many cases, can apply them to their own work. In addition, by 
providing a thorough introduction to the design and executior, of cohort studies, 
including a detailed description of six landmark investigations of this type, we hope to 
interest students of statistical science in this field so that they may turn their attention 
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both to the proper application of current methods and to the further development of 
those methods. 

In the preface to the first volume in this series we stressed the essential similarity of 
statistical methods applicable to the case-control and cohort approaches to epidemiolo- 
gical research, the flexibility of new methods for handling a variety of data 
configurations and the wide range of problems that could be approached from a 
common conceptual foundation. This pursuit of unity and flexibility continues to be our 
goal. We show how elementary methods that have long been used for analysis of 
cohort data relate to explicit statistical models, and how they may be extended so as to 
achieve greater understanding of the collected data. The SMR, for example, has been 
used virtually without change for over 200 years to make age-adjusted comparisons of 
regional and occupational mortality. We show how this statistic may be derived as a 
maximum likelihood estimate in a well-defined statistical model, and how an extension 
of that model leads to a regression analysis of the SMR as a function of one or more 
risk factors. This approach shows us that the well-known 'lack of comparability' of 
SMRs is due to the problem of statistical confounding and may be alleviated by a 
proper analysis. Further extensions of the basic model permit variations in the SMR to 
be estimated as a nonparametric function of time for purposes of exploratory analyses 
of data. 

Experience with the first volume taught us that one of its most important features, 
made possible through the generosity of our collaborators, was the provision of 
appendices containing several condensed, but nonetheless bona-fide, sets of data. 
These were used in worked examples that readers could follow to test their 
understanding of the material (and, occasionally, to find our mistakes). The present 
volume contains appendices that give grouped data from a study of respiratory cancer 
among smelter workers in Montana, USA, and both grouped and individual data 
records on 679 Welsh nickel refiners who had high rates of lung and nasal sinus cancer. 
Summary data from several other rtudies that appear in tables scattered throughout the 
monograph may also be useful for this purpose. 

A major source of dissatisfaction with the first volume was its lack of a subject index. 
We have attempted to remedy the situation by including a combined index to both 
volumes. 

N.E. Breslow and N.E. Day 
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CHAPTER 1 

THE ROLE OF COHORT STUDIES IN CANCER 
EPIDEMIOLOGY 

Longitudinal studies are of fundamental importance in human biology. In the study 
of physical growth, of mental and hormonal development, and in the process of ageing, 
the longitudinal approach has played a central role. The essential feature of such 
investigation is that changes over time are followed at the individual level. Most 
chronic diseases are the result of a process extending over decades, and many of the 
events occurring in this period play a substantial role. The longitudinal surveillance and 
recording of these events is therefore a natural model of study to obtain a complete 
picture of disease causation. Fortunately, for the study of a large number of chronic 
diseases, most of the relevant information on exposure can be summarized in a few 
relatively simple measures, so that continuous monitoring is not required. But the 
regular assessment of exposure variables may well be necessary, and in the 
epidemiology of cardiovascular disease, with its emphasis on physiological and 
biochemical explanatory measures, this approach has been the one of choice. 

The essence of longitudinal studies in epidemiology is the identification of a group of 
individuals about whom certain exposure information is collected; the group is then 
followed forward in time to ascertain the occurrence of the diseases of interest, so that 
for each individual prior exposure information can be related to subsequent disease 
experience. Since the first requirement of such studies is the identification of the 
individuals forming the study group - or cohort - longitudinal studies in cancer 
epidemiology are usually referred to as cohort studies. (This use of the word 'cohort' 
first appeared in the literature in a demographic setting in 1944, according to the 
Oxford English Dictionary. It had apparently been introduced informally in 1935, as 
described by Wall & William, 1970.) 

There are two ways in which the follow-up over time may be conducted. First, one 
may assemble the cohort in the present, and follow the individuals prospectively into 
the future. This type of study is often referred to as a prospective cohort study. It has 
the advantage that one may collect exactly the information thought to be required, and 
the disadvantage that many years may elapse before sufficient cases of disease have 
developed for analysis. 

Second, one may identify a group with certain exposure characteristics, by means of 
historical records, at a certain defined time in the past, and then reconstruct the disease 
experience of the group between the defined time in the past and the present. This type 
of study has been called a historical cohort study. The advantage is that results are 
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potentially available immediately; the disadvantage is that the information available on 
the cohort may not be completely satisfactory, since it would almost certainly have 
been collected for other purposes. Much may be missing, and it may not correspond 
closely to the question of interest. The term 'retrospective cohort study' is also 
commonly used, but is slightly misleading, since the essential viewpoint in most such 
studies is forward in time, although starting in the past. The term 'historical cohort 
study' is preferable logically. In both types of study, the individuals comprising the 
cohort are identified, and information on their exposure obtained, before their disease 
experience is ascertained. 

Cohort studies, by recording disease occurrence in a defined group, provide 
measures of incidence, or mortality rates, and it is these rates that provide the basic 
measures of disease risk. By allowing one to measure the basic risk associated with 
different levels and types of exposure, cohort studies provide the foundation of cancer 
epidemiology. It so happens, however, that a frequently convenient way of expressing 
the excess risk in one group compared to another is in terms of the ratio of the rates in 
the two groups, and to estimate the ratio of the rates one can use just a sample of the 
overall cohort. Since it is often easier and cheaper to obtain information on a sample 
rather than on the entire cohort, the case-control study has become widely adopted in 
cancer epidemiology as an alternative to the cohort study. 

In fact, as commonly used, the case-control approach departs more radically from a 
cohort study than simply by sampling. In many case-control studies, the individuals 
with the disease in question and some comparison group are ascertained first, and their 
exposure experiences for some defined period of time in the past obtained retrospec- 
tively. The results are used to derive rate ratios. A cohort study faces forwards in time, 
starting with -the defined population and its exposure status, and observing the 
subsequent disease experience, whereas a retrospective case-control study faces 
backwards in time, starting with the disease status and reconstructing the exposure 
history from which it emerged. Graphically, the distinction can be expressed as shown 
in Figure 1.1 

Notwithstanding these differences, however, the rate ratios estimated in a case- 
control study should refer to rates in some defined population. As argued in Volume 1 
of this series, the inferences one draws from the results of a case-control study depend 
logically on the interpretation one can give to it as having arisen by sampling from 
some underlying cohort. The less clear the definition of the underlying population, the 
less confidence can be put in the results of the case-control study. Thus, although the 
case-control and cohort approaches appear clearly distinct, they share the same logical 
framework of inference. An increasing number of studies have components of both 
approaches in their design. In these hybrid designs, the cohort component would 
usually identify the group and ascertain the disease experiences in the follow-up 
period; the exposure experience would then be obtained using the case-control 
approach. In this way, one ensures strict definition of the study cohort, but the effort 
and resources devoted to obtaining accurate exposure data can be concentrated on the 
most informative individuals. We discuss later at some length (01.4i) the interplay 
between the cohort and the case-control approach. 

Common to both cohort and case-control studies is the extended period of 
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Fig. 1.1 Differences between cohort and case-control studies 

Time dimension 

Past Present Future 

0 Disease Prospective 
experience + cohort study 
recorded 

Cohort defined 
Cohort defined 

Disease 
experience 
recorded 

Historical 
cohort study 

Exposure - history 
recalled Ret ros'pective 

Cases and controls case-control study 
ascertained 

observation, relating to disease experience in the former and to exposure experience in 
the latter, and sometimes both in either case, and the fact that the individual is the unit 
of observation. These two features contrast with those of studies in which populations 
are compared by using cross-sectional data on both exposure and disease occurrence - 
so-called 'population correlation' or 'ecological' studies. This type of study would 
normally be given little weight in assessing the basic causality of a relationship, and, in 
the series of IARC Monographs on the Evaluation of the Carcinogenic Risk of 
Chemicals to Humans, a prerequisite for evidence to be deemed sufficient to establish 
carcinogenicity in humans is that it derive from individual-based studies. Correlation 
studies may be useful in suggesting interesting areas of study, that is, for hypothesis 
generation. The distinctions, however, are not absolute. Population comparisons may 
be made on the basis of temporal changes or of the experience with respect to exposure 
and disease of different birth cohorts, rather than among populations defined 
geographically, and such comparisons are often given greater weight. A cohort study, 
on the other hand, may include little or no information on variations in exposure 
between individuals, it being known simply that the cohort as a whole was 
exposed - for example, had received Bacillus Calmette-Guerin (BCG) vaccination in 
the first year of life. 



ROLE OF COHORT STUDIES 

1 .  Historical role 

In 1954, two papers were published that are landmarks in the historical development 
of cancer epidemiology. The first, called a 'preliminary report', described the rationale 
for, and the first results of, the prospective cohort study of British doctors (Doll & Hill, 
1954), designed to investigate the relatonship of tobacco smoking to lung cancer. The 
second, a historical cohort study, reported on the risk of bladder cancer in the British 
chemical industry (Case et a!., 1954; Case & Pearson, 1954). 

The prospective study of British doctors was initiated in 1951, when the results of a 
number of case-control studies had already been published demonstrating an associa- 
tion between lung cancer and cigarette smoking. (The design and execution of the 
study are described in detail in Appendix IA.) It is interesting to examine why, in view 
of the results of the case-control studies, a large scale, long-term study was felt 
necessary. The 1954 paper by Doll and Hill starts as follows: 

'In the last five years a number of studies have been made of the smoking habits of 
patients with and without lung cancer. All these studies agree in showing that there are 
more heavy smokers and fewer nonsmokers among patients with lung cancer than 
among patients with other diseases. While, therefore, the various authors have all 
shown that there is an "association" between lung cancer and the amount of tobacco 
smoked, they have differed in their interpretation. Some have considered that the only 
reasonable explanation is that smoking is a factor in the production of the disease; 
others have not been prepared to deduce causation and have left the association 
unexplained. 

'Further retrospective studies of that same kind would seem to us unlikely to 
advance our knowledge materially or to throw any new light upon the nature of the 
association. If, too, there were any undetected flaw in the evidence that such studies 
have produced, it would be exposed only by some entirely new approach. That 
approach we considered should be "prospective". It should determine the frequency 
with which the disease appeared, in the future, among groups of persons whose 
smoking habits were already known.' 

In this initial report on the British doctors study, the authors stressed that the results 
of the prospective study were in close agreement (Table 1.1) with the results of their 
earlier case-control study (Doll & Hill, 1950), in terms of the ratios of the rates in the 
different smoking categories. The absolute level of the rates, however, appeared to be 
more than twice as high in the case-control study (confined to the subset of the study 
consisting of residents of Greater London) than in the cohort of doctors. It should be 
noted that the results of the case-control study were converted into absolute incidence 
rates for lung cancer and were not limited to a description of the effect of smoking in 
terms of the ratios of rates in the different smoking categories. 

The results of 20 years or more of follow-up have been published in some detail 
(Doll & Peto, 1976, 1978; Doll et al., 1980). A comparison of these results with those 
of the case-control study published in the early 1950s (Doll & Hill, 1950, 1952) 
highlights the relative merits of the two approaches. The case-control study was begun 
in April 1948, and the final results published in December 1952. A total of 4342 people 
were interviewed, of whom 1488 were lung cancer cases. Most of the analyses referred 
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Table 1.1 Comparison of the relation between risk of dying from lung cancer 
and the most recent number of cigarettes smoked per day, among men aged 
45-74, obtained from a prospective cohort study and a retrospective case- 
control study 

Non- Smokers All groups 
smokers 

Standardized rates: 
'Backward' studya of 

patients' histories 0.11 1.56 2.20 4.00 1.97 
'Forward' studyb of 

mortality of doctors 0.00 0.50 0.97 1.45 0.73 

Each rate as a % of 
the rate for all groups: 

'Backward' study of 
patients' histories 6% 79% 112% 203% 100% 

'forward' study of 
mortality of doctors 0% 68% 133% 199% 100% 
- - - - - - - - pp 

a From Doll and Hill (1950) 
From Doll and Hill (1954) 

to 1465 lung cancer cases and a series of 1465 individually matched controls. By 
contrast, the prospective study was begun in October 1951, the month the British 
doctors were first approached, and the most recent results for men, based on 20 years 
of follow-up, appeared in 1978, and for women, based on 22 years of follow-up, in 
1980. During these years, 441 lung cancer deaths were registered among the 34440 
men, and 27 among the 6194 women, enrolled in the study. The advantages of the 
case-control study are clear: many more cases of lung cancer could be assembled in a 
much shorter time. In addition, the total number of persons interviewed in the 
case-control study was only one-tenth the number who completed the questionnaire in 
the prospective study. This reduction in numbers facilitates the asking of a broader 
range of questions, allowing one to obtain information on a wider range of potential 
risk factors. In the prospective study, the questionnaire was kept short and simple, in 
order, as the authors say, 'to encourage a high proportion of replies'. 

What was achieved in return, then, for the high cost and length of the prospective 
study? Part of the answer is given by comparing Table 1.2a, from the prospective 
study, and Table 1.2b, from the case-control study. Attention has been limited to 
males; a similar comparison could be made for females. The results of the case-control 
study with regard to the health effects of cigarette smoking, relative to the average 
amount smoked per day, are summarized in Table 1.2b. For the prospective study, in 
addition to the 441 lung cancer deaths, there were 9631 other deaths, and the full range 
of the effect of cigarette smoking on mortality can be examined, either for each 
individual cause of death or for all causes combined. One can see that there is nearly a 
two-fold difference in the annual death rate between heavy smokers and nonsmokers. 
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Table 1.2a Death rates between November 1951 and October 1971 by cause of death and by smoking 
habits when last asked: male British doctorsa 

Cause of death 

Cancer 
Lung 
Oesophagus 
Other respiratory sites 
Stomach 
Colon 
Rectum 
Pancreas 
Prostate 
Kidney 
Bladder 
Marrow and reticulo- 

endothelial system 
Unknown site 
Other site 

Respiratory disease 
Respiratory tuberculosis 
Asthma 
Pneumonia 
Chronic bronchitis 

and emphysema 
Other respiratory 

disease 
Pulmonary heart disease 
Cardiac and vascular disease 

Rheumatic heart disease 
lschaemic heart disease 
Myocardial degeneration 
Hypertension 
Arteriosclerosis 
Aortic aneurysm 

(non-syphilitic) 
Venous thromboemt;olism 
Cerebral thrombosis 
Other cerebrovascular 

disease 
Other cardiovascular 

disease 

No. of  Annual death rate per 100 000 men, standardized for age 
deaths 

Non- Current Ex- Current Current smokers, 
smokers or ex- smokers smokers, any tobacco 

smokers any (cig.lday) 
tobacco 

1-14 15-24 225 

Others 
versus   rend^ 
non- 
smokersb 

a From Doll and Peto (1976) 
bFigures are given whenever the value was greater than 2.71 (p<0.1); figures i n  parentheses indicate a decreasing trend from 

nonsmokers t o  heavy smokers; others indicate an increasing trend 
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Table 1.2a-contd. 

Cause of death No. of Annual death rate per 100 000 men, standardized for age x2 
deaths 

Non- Current Ex- Current Current smokers, Others 
smokers or ex- smokers smokers, any tobacco versus  rend^ 

smokers any (cig./day) non- 
tobacco smokersb 

1-14 15-24 225 

Other diseases 
Parkinsonism 
Peptic ulcer 
Cirrhosis of liver, 

alcoholism 
Hernia 
Other digestive disease 
Nephritis 
Other genitourinary 

disease 
Other disease 

Violence 
Suicide 
Poisoning 
Trauma 

All causes 10072 1317 1748 1652 1802 1581 1829 2452 68.47 244.16 
(no. of deaths) (490) (9132) (31 14) (6018) (2707) (1986) (1325) 

Table 1.2b Most recent amount of tobacco smoked regularly before the onset 
of the present illness: lung carcinoma patients and matched control patients 
with other diseases (males only)" 

Disease group Number Number smoking daily: 
of non- 
smokers 1 cig. 5 cig. 15 cig. 25 cig. 50 cig. 

1357 lung cancer patients 7 49 516 445 . 299 41 
0.5% 3.6% 38.0% 32.8% 22.0% 3.0% 

1357 control patients 6 1 91 615 408 162 20 
4.5% 6.7% 45.3% 30.1% 11.9% 1.5% 

a From Doll and Hill (1952) 

For an exposure with a wide range of deleterious effects, there is no substitute for the 
broad picture given by Table 1.2a. 

A second advantage to be gained from the extended duration of a prospective study 
is the opportunity it affords to obtain further information on the exposure of interest. 
In the British doctors study, four separate questionnaires were sent (in 1951, 1957, 
1963 and 1371). The good compliance of the population under study is well indicated 
by the low proportion of non-responders to the second, third and fourth questionnaires 
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Table 1.3 Response to questionnaires 

Second Third Fourth 
questionnaire questionnaire questionnaire 

Survey period November 
1957- 
October 1958 

No. known to have died before 
end of survey period 3122 

No. presumably alive at end 
of survey period 31 318 

No. who replied by end 30 810 
of survey (and % of men (98.4) 
then alive) 

Reasons for non-response: 
Too ill 31 
Refused 36 
Address not found 72 
Unknown and other reasons 369 

March- J u 1 y- 
October 1966 October 1972 

a Includes all men who had refused previously 

(see Table 1.3); it was not sent to those who had refused to reply previously or who 
had been struck off the Medical Register. These additional questionnaires certainly 
improved the quality of the basic information that was being sought, namely, the 
average amount smoked in the few years preceding onset of disease, and also provide 
much useful information on the time sequence of events, particularly changing smoking 
habits. The relationship between the years since stopping smoking and the level of 
excess risk for lung cancer, both absolute and relative, has been more clearly defined 
from the prospective studies. 

The British doctors prospective study was followed rapidly by a similar study 
undertaken by the American Cancer Society, started in 1952 (Hammond, 1966), and 
two years later, in 1954, by a study of United States veterans (Kahn, 1966). Other 
studies have followed since, notably a prospective study in Japan (Hirayama, 1975). 
The impact of these studies was much greater than their unambiguous demonstration 
of the health effects of tobacco smoking. They were the studies which, at least in the 
field of cancer, established chronic disease epidemiology as a rigorous scientific 
discipline. 

The case-control studies, when they were first reported, appeared fraught with 
possible biases. The potential for error, so many claimed, was such that little credence 
could be put in the results. The large prospective studies begun in the early 1950s have 
shown that observational studies in humans can produce results that establish beyond 
reasonable doubt associations between exposure and disease. Furthermore, they 
demonstrated pragmatically that prospective cohort studies and retrospective case- 
control studies can, under favourable circumstances, give the same results. This 
demonstration, complementing the theoretical arguments developed at that time for 
the equivalence of the two study designs, at least in terms of estimating relative risks 
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Table 1.4 The number of death certificates expected if no special risk were operating and the 
number of cases and death certificates found for the various exposure classesa 

Rank Class Group Total No. of cases on No of cases Expected % of Significance P 
no. of nominal roll on nominal no. of expected of difference 
cases roll for whom such no. 
found Total Alive Dead death cases derived 

certificate from in- 
mentions complete 
bladder data 
tumour 

1 Aniline without 1 4 4b 2b 2b 1 0.30 35.8 None >0.1 
magenta contact II 0 0 0 0 0 0.23 None >0.1 

111 0 0 0 0 0 0.01 None >0.1 
All 4 4b 2b 2b 1 0.54 None >0.1 

2 Aniline with 1 8 5 3 2 2 0.30 15.6 Suspicious 0.025 
possible II 1 1 0 1 1 0.05 None >0.1 
magenta contact Ill 0 0 0 0 0 0.00 None >0.9 

All 9 6 3 3 3 0.35 Signicant <0.02 

3 Allaniline 1 12 gb 5b 4b 3 0.60 20.3 Suspicious 0.025 
II 1 1 0 1 1 0.28 None >O.Ol 

Ill 0 0 0 0 0 0.01 None >0.1 
All 13 l ob  5b 5b 4 0.89 Suspicious 0.025 

4 Benzidine 1 3 8  34 21 13 10 0.54 3.7 Very high <0.001 
I I O O O  0 0 0.17 None >0.1 
Ill 0 0 0 0 0 0.01 None >0.1 

All 38 34 21 13 10 0.72 Very high <0.001 

5 a-Naphthylamine 1 28 19 13 6 6 0.66 3.2 High 0.005 
I1 0 0 0 0 0 0.04 None >0.1 

111 0 0 0 0 0 0.00 None >0.9 
All 28 19 13 6 6 0.70 High <0.005 

6 P-Naphthylamine 1 59 55 28 27 26 0.30 4.1 Very high <0.001 
I I O O O  0 0 0.00 None >0.9 

Ill 0 0 0 0 0 0.00 None >0.9 
Alt 59 55 28 27 26 0.30 Very high <0.001 

7 Mixed exposures 1 162 135 50 85 75 1.15 13.5 Very high <0.001 
ll 9 7 0 7 5 0.32 High <0.005 

111 2 2 1 1 1 0.006 Significant <0.005 
All 173 144 51 93 81 1.48 Very high <0.001 

8 All classes, 1 287 243 112 131 117 2.65 7.3 Very high <0.001 
excluding 1 1 9 7 0  7 5 0.53 High <0.005 
aniline Ill 2 2 1 1 1 0.02 Suspicious 0.025 

All 298 252 113 139 123 3.20 Very high <0.001 

9 All classes 1 299 252 117 135 120 3.25 9.3 Very high <0.001 
1 \ 1 0  8 0 8 6 0.81 High <0.005 

Ill 2 2 1 1 1 0.03 Suspicious 0.025 
All 311 262 118 144 127 4.09 Very high <0.001 

a From Case et a/. (1954) 
b~~~~ manufacturer of auramine 
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(Cornfield, 1951), has led to the case-control study becoming the major methodological 
tool in cancer epidemiology. 

The bladder cancer study of the British chemical industry (Case et al., 1954) also 
played a seminal role in the evolution of cancer epidemiology and is the prototype of 
historical cohort studies. Its purpose was to determine 'whether the manufacture or use 
of aniline, benzidine, /3-naphthylamine or a-naphthylamine could be shown to produce 
tumours of the urinary bladder in men so engaged'. It had been suspected since the last 
century that the production of aniline-based dyestuffs might produce bladder cancers 
among the men employed. There was lack of unanimity concerning the agent or agents 
responsible, however, and little information on the level of the excess risk. 

In the early 1950s, Case and his co-workers constructed a list, or nominal roll as they 
termed it, of all those who had ever been employed in the chemical industry in the 
United Kingdom for at least six months since 1920, worked for one of the 21 firms 
which cooperated in the study, and for whom exposure to one of these compounds 
listed above had been documented. Age and the dates between which exposure to 
these substances occurred were recorded. A search was made retrospectively for all 
-bladder cancer cases occurring among men who had been employed, in or after 1921 
until 1 February 1952, in the chemical industry. Of the 455 cases identified, 127 were 
on the nominal roll, had died, and had bladder cancer mentioned on the death 
certificate. Since bladder cancer death rates based on death certificates mentioning 
bladder cancer were known between 1921 and 1952, the nominal roll could be used to 
calculate expected numbers, strictly comparable to the 127 observed bladder cancer 
deaths, using calendar time- and age-specific rates. The results of these calculations are 
given in Table 1.4. Accepting the authors' use of the terms 'aniline', 'benzidine' and so 
on to mean these substances as encountered in industrial practice, rather than to mean 
the pure chemicals, Table 1.4 gives clear, quantitative evidence of the carcinogenicity 
to humans of /3-naphthylamine, a-naphthylamine and benzidine. Aniline exposure, as 
it occurred in the British chemical industry in the first half of this century, presents a 
risk to the human bladder of a lower order of magnitude than the risk associated with 
/3-naphthylamine, if it presents a risk at all. It is interesting to note that, 28 years later, 
in 1982 (IARC, 1982a), this study was still considered the soundest evidence on which 
to base an evaluation of .the carcinogenicity of aniline to humans. 

No real alternative existed to the strategy adopted by Case, since an answer to the 
question was urgently required. A prospective study was therefore out of the question, 
and, furthermore, exposure had already been substantially reduced so that present 
levels were no longer indicative of past exposure. Since only a very small proportion of 
all bladder cancer cases in the general population of England and Wales were related 
to the chemical industry, a general case-control study of bladder cancer would not have 
been informative. Reconstruction of the past for a cohort of ind.ividuals with recorded 
exposure to the compounds of interest was the only feasible approach. In the 30 years 
since Case's study was reported, this methodology has become the approach of choice . - 

in 'many situations. 

1.2 Present significance and specific strengths of cohort studies 

In the next two sections, we discuss the relative merits and drawbacks of cohort and 
case-control studies. Although, as we have seen, the distinction is not always clear cut, 
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and the two may merge into each other, what we have in mind in the following 
discussion is a comparison of two approaches: one in which a group of individuals is 
defined, their exposure determined and their subsequent disease experience ascer- 
tained; the other in which cases of a specific disease are identified together with a 
suitable comparison group, and information on exposure before disease onset obtained 
retrospectively. Described in this way, it would seem natural that the latter might 
appeal if the focus is on causation of a specific disease, and the former if interest is on 
the health consequences of a given exposure. 

Certainly, cohort studies have played a major role in the last 30 years in identifying 
specific environmental agents or other factors as carcinogenic hazards. We give in 
Table 1.5 the factors that are currently recognized as causally related to cancer risk in 
man, together with the type of evidence on which causality has been established. Case 
reports have been excluded. The intention has been to categorize the first epidemiolog- 
ical study that could be regarded as conclusive, although the choice is necessarily 
subjective, at least on occasion. For some associations, such as that between sexual 
activity and cervical cancer, the first epidemiological study establishing the link is not 
readily identifiable. A series of studies over the years has refined the nature of the 
association. For others, the effect is so strong that a case series, complemented by 
theoretical calculation of the size of the expected number, has been sufficient to 
establish the existence of an excess. The induction of lymphomas following immuno- 
suppression of recipients of renal grafts using azathioprine is an example, but the 
excess of other malignancies emerged only from a formal cohort study. An immedi- 
ately evident feature of Table 1.5 is that the cohort study has been the method used to 
incriminate the great majority of factors so far identified as carcinogenic hazards. In 
addition to their value in establishing qualitatively that a carcinogenic hazard exists, 
cohort studies have been of importance in establishing quantitative estimates of 
increased risk. In Table 1.6 we list the few agents given in Table 1.5 for which 
substantial quantitative information is available on dose-response or the temporal 
evolution of risk. In later chapters, particularly Chapter 6, we discuss the quantification 
of excess risk and its temporal evolution in considerable detail, but one can see from 
Table 1.6 that much of the information currently available, particularly on the 
temporal development of risk, has come from cohort studies. 

Tables 1.5 and 1.6 outline the significance that cohort studies have had historically in 
cancer epidemiology. These tables might give the impression that cohort studies are 
mainly of value when studying specific exposures, often rare and of little relevance to 
the great majority of cancers. Certainly, for the factors identified as cancer risks to 
which exposure is widespread, case-control studies have often been the study method 
used. The present significance of cohort studies, however, is wider than that suggested 
by Table 1.5. 

Although, in many situations, the relatively low cost of retrospective case-control 
studies and the speed with which they can be conducted make them the design of 
choice, there are clearly occasions in which such an approach is inadequate, and a 
study design is required that is directed more towards the continuous recording of 
events in the years before disease, or which focuses on a broad spectrum of disease. 
This approach is the essence of a longitudinal or cohort study, the strengths of which 
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Table 1.5 Established human carcinogenic agents and circumstances 

Agent Site affected Type of exposure Main type of evidencea 

Aflatoxin 
Alcoholic drinks 

Liver 
Mouth 
'Larynx 
Oesophagus 
Pharynx 
Bladder 
Renal pelvis 

Food 

Lifestyle 

4-Aminobiphenyl 
Analgesic mixtures 

containing phenacetin 
Arsenic and arsenic 

compounds 

Occupational 
Medicinal 

Skin Medicinal, 
occupational, 
drin king-water 

Occupational 
Occupational 

and 
geographic 

Occupational 
Medicinal 

? Case series 

Geographicala 
cohortg 
C ~ h o r t ' ~ ~ "  (in an 

informal sense) 

Lung 

Pleura 
Peritoneum Lung I 
Bladder 
Lymphomas 
Squamous skin 

tumours 
Liver 
Leukaemia 
Bladder 

Oesophagus 
Lung 
Nasal sinus 

Asbestos 

Auramine manufacture 
Azathioprine 

Cohort12 
~ o h o r t ' ~ , ' ~  (after 

earlier reports of a 
very high incidence of 
lymphomas) 

cohort15 
cohort16 

Benzene 
Benzidine 
Betel-quid and tobacco 

chewing 
Bis-chloromethyl ether 
Boot and shoe (leather 

goods) manufacture 

Occupational 
Occupational 

Lifestyle Case-control17 

Based on cases, but 
interpreted mainly as 
a case-control studyz0 

Cohort21 

Occupational 
Occupational 

Busulphan (myleran) 
Chloram bucil 
Chlornaphazine 
Chromium and certain 

chromium compounds 
Conjugated oestrogens 
Cyclophosphamide 

Leukaemia 
Leukaemia 
Bladder 
Lung 

Medicinal 
Medicinal 
Medicinal 
Occupational 

Endometrium 
Bladder 
Leu kaemia 

Medicinal 
Medicinal 
Medicinal 

C a s e - ~ o n t r o l ~ ~ - ~ ~  

Case-control within 
a 

Case-control28 

CO h ort30*31 

Diethylstilboestrol 
Furniture mamifacture 
Ionizing radiation 

Vagina 
Nasal sinus 
Leu kaemia 

Medicinal 
Occupational 
Occupational, 

medicinal 
Warfare Most other 

sites 
Cohort32 (see 

references to 
Appendix IB) 

Cohort33 lsopropyl alcohol 
manufacture 

Melphalan 
Methoxsalen with UV-A 

(PUVA) 

Nasal sinus Occupation 

Leukaemia 
Skin 

Medicinal 
Medicinal 

Cohort34 
Cohort35 
Case-control within 

a 
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Table 1.5 (contd) 

Agent Site affected Type of exposure Main type of evidencea 

Mustard gas Lung, larynx 
P-Naphthylamine Bladder 
Nickel refining Nasal sinus 

Lung 
Obesity Endometrium 

Gallbladder 
Sexual promiscuity Cervix 

} 
Soots, tars and oils Scrotum 

Skin 
Lung 

Tobacco smoking Many sites 

Treosulphan Leu kaemia 
Ultraviolet light Skin 

Vinyl chloride Liver 
(angiosarcoma) 
(lung, brain) 

Hepatitis B virus Liver 
Reproductive history, Breast 

age at first birth, 
age at menarche, 
age at menopause, 
parity Ovary 

Chlonarchis siensis Liver 
(cholangio- 
carcinoma) 

Schistosoma haematobium Bladder 
Epstein-Barr virus Burkitt's 

lymphoma 

Occupational 
Occupational 

Occupational 1 
Lifestyle 

Lifestyle 

Occupational I 
Lifestyle 

Medicinal 
Lifestyle 

(occupational) 
Occupational 

Lifestyle 
Lifestyle 

Lifestyle 

Lifestyle 
Lifestyle 

case-control39 

Case-control4' 
Numerous 

industrial 
cohorts 

Both case-control 
and cohort (see 
0 1.1) 

cohort4* 
Geographic and otherbr43 

Based on cases44 but 
interpreted as a 
cohort study45 

Cohort (see Appendix IC) 
case-control46 

aReferences: Peers. F.G. & Linsell. C.A. (1973) Dietary aflatoxin and liver cancer. A population based study in Kenya. Br. J. Cancer, 
27,473-484; Wynder, E.L., Bross, I.D.J. & Feldman. R.M. (1957) A study of the etiological factors in cancer of the mouth. Cancer, 10, 
1300-1323; ~ y n d e r ,  E.L., Bross, I.J. & Day, E. (1956) A study of environmental factors in cancer of the larynx. Cancer, 9, 86-110; 
4Wvnder, E.L. & Bross, I.J. (1961) A study of etiological factors in cancer of the esophagus. Cancer, 14,389-413; 5~og le r ,  W.R., Lloyd, 
J.W. & Milmore, B.K. (1962) A retrospective study of etiological factors in cancer of the mouth, pharynx and larynx. Cancer, 15, 
246-258; 6Melick, W.F., Naryka. J.J. & Kelly. R.E. (1971) Bladder cancer due to exposure to para-aminobiphenyl: a 17-year follow-up. 
J. Urol., 106, 220-226; McCredie, M., Ford, J.M., Taylor, J.S. & Stewart, J.H. (1982) Cancer of the renal pelvis in  New South Wales. 
Relationship to analgesic consumption and smoking. Cancer, 49, 2617-2625; 'Tseng, W.P., Chu, H.M., How, S.W., Fong, J.M., Lin, C.S. 

& Yeh, S. (1968) Prevalence of skin cancer in  an endemic area of chronic arsenicism in  Taiwan. J. natl Cancer Inst, 40,453-463; Lee, 
A.M. & Fraumeni, J.F.. Jr (1969) Arsenic and respiratory cancer in man: an occupational study. J. natl Cancer Inst., 42, 1045-1052; 
l 0 ~ o l l ,  R. (1955) Mortality from lung cancer in abestos workers. Br. J. ind. Med., 12.81-86; l1 Wagner, J.C., Sleggs, C.A. & Marchand, 
P. (1960) Diffuse pleural mesothelioma and asbestos exposure in the North-western Cape Province. Br. J. ind. Med., 17, 260-271; 
'*Case, R.A.M. & Pearson, J.T. (1954) Tumours of the urinary bladder in workmen engaged in  the manufacture and use of certain 
dyestuff intermediates i n  the British chemical industry. Part II. Further considerations of the role of aniline and of the manufacture of 
auramine and magenta (fuchsine) as possible causative agents. Br. J. ind. Med., 11, 213-216; l3 Kinlen, L.J., Sheil, A.G.R. & Peto, J. 
(1979) Collaborative United Kingdom-Australasian study of cancer in patients treated with immunosuppressive drugs. Br. med. J., iv, 
1461-1466; 14~inlen. L.J.. Peto. J.. Doll. R. & Sheil. A.G.R. (1981) Cancer in  patients treated with immunosuppressive drugs. Br. med. 
J., i, 474; l5 Infante, P.F., Rinsky. R.A.. Wagoner, J.K. & Young, R.J. (1977) Leukaemia in benzene workers. Lancet, ii. 868-869; l6 Case, 
R.A.M., Hosker, M.E., McDonald. D.B. & Pearson, J.T. (1954) Tumours of the urinary bladder in workmen engaged in the manufacture 
and use of certain dyestuff intermediates in the British chemical industry. Part I. The role of aniline, benzidine, alpha-naphthylamine 
and beta-naphthylamine. Br. J. ind. Med., 11. 75-104; 17Sanghvi, L.D., Rao, K.C.M. & Khanolkar, V.R. (1955) Smoking and chewing of 
tobacco in  relation to cancer of the upper alimentary tract. Br. med. J., i, 11 11-1 114; 18Figueroa, W.G., Raszkowski, R. & Weiss, W. 
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Table 1.5 (contd) 

(1973) Lung cancer in  chloromethyl methyl ether workers. New Engl. J. Med., 288, 1096-1097; lS~hiess,  A.M., Hey, W. & Zeller, H. 
(1973) Zur Toxikologie von Dichlordimethylather-Verdacht auf kanzerogene Wirkung auch beim Menschen. Zbl. Arbeitsmed., 23, 
97-102; 20~cheson, E.D., Cowdell, R.H. & Jolles, B. (1970) Nasal cancer in the Northamptonshire boot and shoe industry. Sr. med. J., i, 
385-393; 21 Ston, H., Fox, W., Girling, D.J., Stephens, R.J. & Galton, D.A.G. (1977) Acute leukaemia after busulfan. Br. med. J., ii, 
1513-1517; 22 Reimer, R.R., Hoover, R., Fraumeni. J.F., Jr & Young, R.C. (1977) Acute leukemia after alkylating-agent therapy of 
ovarian cancer. New Engl. J. Med., 297, 177-181; 23~hiede, T., Chievitz, E. & Christensen, B.C. (1964) Chlornaphazine as a bladder 
carcinogen. Acta med. scand., 175, 721-725; 24Bidstrup, P.L. & Case, R.A.M. (1956) Carcinoma of the lung in workmen in the 
bichromates-producing industry in  Great Britain. Br. J. ind. Med., 13, 260-264; 25Smith, C.D., Prentice, R., Thompson, D.J. & 
Herrmann, W.L. (1975) Association of exogeneous estrogen and endometrial carcinoma. New Engl. J. Med., 293, 1164-1167; 26 Ziel, 
H.K. & Finkle, W.D. (1975) Increased risk of endometrial carcinoma among users of conjugated estrogens. New Engl. J. Med., 293, 
1167-1170; 27 Mehnert, W.H., Haas, J.F., Kaldor, J., Day, N.E., Kittelmann, B., Stanaczek, W. & MGhner, M. (1986) A case-control study 
o f  leukaemia as a second primary malignency following ovarian and breast neoplasms. In: Schmahl, D. & Kaldor, J.M., eds, 
Carcinogenicity o f  Alkylating Cytostatic Drugs (IARC Scientific Publications No. 78). Lyon, International Agency for Research on Cancer, 
pp. 203-221; "Herbst, A.L., Ulfelder, H. & Poskanzer, D.C. (1971) Adenocarcinoma of the vagina. Association of maternal stilbestrol 
therapy with tumor appearance in young women. New Engl. J. Med., 284, 878-881; "Rang, E.H. & Acheson, E.D. (1981) Cancer in 
furniture workers. I n t  J. Epidemiol., 10, 253-261; 30 Dublin. L. & Spiegelmann, M. (1947) The longevity and mortality of American 
physicians 1938-42. J. Am. med. Assoc., 134, 1211-1220; 31 Court Brown, W.M. & Abbatt, J.D. (1955) The incidence of leukaemia in 
ankylosing spondylitis treated with X-rays. Lancet, i, 1283-1287; 32 Lange, R.D., Moloney, W.C. & Yamawaki, T. (1954) Leukaemia in 
atomic bomb survivors. Blood, 9. 574-580; 33 Hueper, W.C. (1966) Occupational and environmental cancers of the respiratory system. 
Recent Results Cancer Res.. 3. 105-107; 34Law, I.P. & Blom, J. (1977) Second malignancies in patients with multiple myeloma. 
Oncology, 34, 20-24; 35 Stern, R.S., Zierler, S. & Parrish, J.A. (1980) Skin carcinoma in patients with psoriasis treated with topical tar 
and artificial ultraviolet radiation. Lancet, i, 732-735; 36Wada, S., Nishimoto, Y., Miyanishi, M., Kambe, S. & Miller, R.W. (1968) 
Mustard gas as a cause of respiratory neoplasia in man. Lancet, i, 1161-1163; 37 Doll, R. (1958) Cancer of the lung and nose in nickel 
workers. Br. J. ind. Med., 51. 217-223; 3a Doll, R., Morgan, L.G. & Speizer, F.E. (1970) Cancers of the lung and nasal sinuses in nickel 
workers. Br. J. Cancer, 24, 623-632; 3s Damon, A. (1960) Host factors in cancer of the breast and uterine cervix and corpus. J. natl 
Cancer Inst., 24, 483-516; 40~riedman, G.D., Kannel, W.B. & Dawber, T.R. (1966) The epidemiology of gallbladder disease: 
obse~ations in the Framingham study. J. chron. Dis., 19, 273-292; 41 Wynder, E.L., Cornfield, J., Schroff, P.D. etal. (1954) A study of 
environmental factors in carcinoma of the cervix. Am. J. Obstet Gynecol., 68, 1016-1047; 42 Pedersen-Bjergaard, J., Nissen, N.I., 
Sprrensen, H.M., Hou-Jensen, K.. Larsen, M.S., Ernst, P., Ersbprl, J., Knudtzon, S. & Rose, C. (1980) Acute non-lymphocytic leukemia in 
patients with ovarian carcinoma following long-term treatment with treosulphan (=dihydroxybusulfan). Cancer, 45, 19-29; 43Scon~, 
J., Fears, T.R. & Fraumeni, J.F., Jr (1982) Solar radiation. In: Schottenfeld, D. & Fraumeni, J.F., Jr, eds, Cancer Epidemiology and 
Prevention, Philadelphia. W.B. Saunders Co., pp. 255-276; %reech, J.L., Jr & Johnson, M.N. (1974) Angiosarcoma of the liver in the 
manufacture of polyvinyl chloride. J. occup. Med., 16, 150-151; 45~axwei ler ,  R.J., Stringer, W., Wagoner, J.K., Jones, J., Falk, H. & 
Carter, C. (1976) Neoplastic risk among workers exposed to vinyl chloride. Ann. N.Y. Acad. Sci., 271, 40-48; 46 MacMahon, B., Cole, P., 
Lin, T.M., Lowe, C.R., Mirra. A.P.. Ravniher, B., Salber, E.J., Valaoras, V.G. & Yuasa, S. (1970) Age at first birth and cancer of the breast. 
A summary of an international study. Bull. World Health Organ., 43, 209-221; 47 Joly, D.J., Lilienfeld, A.M., Diamond, E.L. & Bross, 
I.D.J. (1974) An epidemiological study of the relationship of reproductive experience to cancer of the ovary. Am. J. Epidemiol., 99, 
190-209; Balarmaric, J. (1973) lntrahepatic bile duct carcinoma and C. sinensis inflection in Hong Kong. Cancer, 31, 468-473; 
&Ferguson, A.R. (1911) Associated bilharziosis and primary malignant disease of the urinary bladder with observations in  a series of 
forty cases. J. Pathol. Bacteriol.. 16. 76-94; 50de-Th6, G.B., Geser., A., Day, N.E., Tukei, P.M., Williams, E.H., Beri, D.P. Smith, P.G., 
Dean, A.G., Bornkamm, G.W.. Feorino, P. & Henle, W. (1978) Epidemiological evidence for causal relationship between Epstein-Barr 
virus and Burkitt's lymphoma from Ugandan prospective study. Nature, 274, 756-761 

b ~ h e  evidence comes from a wide variety of sources, and no single study can be regarded as definitive. The reference is to a review 

compared to case-control studies are described as follows: 

(a) A wider picture is obtained of the health hazards associated with a given 
exposure. This point was stressed when discussing the early studies on the effects of 
cigarette smoking (see Tables 1.2a and 1.2b). The link with the disease under prime 
suspicion, lung cancer, was established by retrospective case-control studies, but 
identification of the full range of diseases for which smoking increases the risk came 
from the prospective studies. Perhaps the most comprehensive longitudinal study of an 
exposed population with cancer as a major endpoint of interest is the follow-up of the 
survivors of the atomic bomb explosions in Japan (see Appzndix IB for a description of 
the study design). An excess of leukaemia had been identified before the main 
programme started, but it was expressly stated when the atomic bomb survivor studies 
were launched that the overall aim was to study all the long-term health effects of 
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Table 1.6 Agents for which quantitative information is available on risk and 
exposure 

Agent Site Type of study providing the principal information - 
Quantitative information Quantitative information 
on level of exposure on temporal development 

Cigarette 
smoking 

Alcohol 
Asbestos 

(onizing 
radiation 

Conjugated 
oestrogens 

Lung Case-control and Cohort 
cohort 

Other sites Case-control Little available 
Oesophagus Case-control Little available 
Lung Cohort Cohort 
Mesothelioma Cohort Cohort 
Most sites Cohort Cohort 

Endometrium Case-control Case-control 

ionizing radiation, and in particular to determine if there was any evidence for a 
general acceleration of ageing. The enormous value of the study in providing the most 
precise estimates of the radiogenic cancer risk that are currently available for the 
majority of sites (Committee on the Biological Effects of Ionizing Radiation, 1980) has 
tended to obscure the major, if negative, findings that no detectable increase in 
mortality rates for nonmalignant diseases has occurred, nor is there evidence for an 
acceleration of the ageing process. The full picture of the long-term health effects of a 
given exposure can be provided only by the cohort approach. 

(b) Recall and selection bias can usually be eliminated. This was perhaps the 
principal reason for launching the major prospective studies of cigarette smoking. 
Recall bias, a bugbear of case-control studies, should not occur in cohort studies. It is 
sufficient, of course, that recall bias could have occurred, rather than that it 
demonstrably did, for the results of a study to be questioned. An illustrative example 
of the doubts that may surround information that is obtained retrospectively is the 
early report of an excess of cancer among children irradiated in utero for diagnostic 
purposes (Stewart et al., 1958). This study was based on interviews of mothers of cases 
and of controls about their pregnancy history after diagnosis of cancer in the case child. 
It was initially discounted because of the possible recall bias on the part of the 
mother - a criticism almost impossible to refute from within the study. A cohort study 
involving all births between the years 1947 and 1954 in the principal Massachusetts 
maternity hospitals, undertaken to test the validity of the association, gave quantita- 
tively similar results (MacMahon, 1962). Since the cohort approach of this latter study 
avoids recall bias, any bias in the results must derive from the selection of women who 
undergo diagnostic X-ray during pregnancy and not from problems of recall. More 
detailed examination of the association in terms of year of irradiation (Bithell & 
Stewart, 1975), and more recent studies of twins (Boice et al., 1985), suggest that the 
association is real. 

Bias is not the only way in which differences in recall between cases and controls can 
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Table 1.7 Effect of different precision of response between cases 
and controls, for a polytomous exposure variable 

Levels of exposure 

0 1 2 3 4 Total 

'True' distribution (in 
cases and controls) 0.05 0.3 0.3 0.3 0.05 1.00 

Observed distri butiona 
~n cases 0.075 0.275 0.3 0.275 0.075 1.00 

Observed distributionb 
in controls 0.10 0.25 0.3 0.25 0.10 1 .OO 

Apparent odds ratio 1.0 1.47 1.33 1.47 1.0 
\ J 

1.37 

aObtained by spreading 10% of the true distribution on each side of the correct data 
point 

Obtained by spreading 20% of the true distribution on each side of the correct data 
~ o i n t  

distort risk estimates derived from case-control studies, although it may be the major 
one. Distortion can also arise if the precision of the recall is different between cases 
and controls, again not a problem that should arise in a properly conducted cohort 
study. Consider a situation such as that illustrated in Table 1.7, in which the true 
distribution of a polytomous response is the same in cases and controls. Among both 
cases and controls, there is some unbiased random error in response, with a greater 
standard error among the controls. The effect is to generate a spurious risk differential. 
The picture of apparent low risk among a nonexposed group of low frequency, and 
lack of dose-response among the exposed is similar to that seen, for example, in several 
studies associating coffee drinking with bladder cancer (Hartge et al., 1983). 

Selection bias in case-control studies is often almost impossible to evaluate. If 
population controls are used, a large proportion of those originally selected may refuse 
to participate; if hospital controls are used, the choice of which disease categories to 
include is difficult to resolve, particularly for complex exposures like diet. It is rare for 
the case series to approach 100% of those arising in a defined population; if the series 
is eventually matched to a cancer registry, the proportion of eligible cases actually 
included seldom approaches the coverage of 90% or more considered acceptable for 
cohort studies (see Table 1.10). For cohort studies with good follow-up, problems of 
selection bias should not arise. 

Provided that the follow-up mechanisms do not favour particular exposure groups, 
which can be checked by examining the data, then comparison of the disease 
experience among different subgroups of the study cohort should be unbiased. The 
cohort itself, however, will usually be a selected subgroup of the general population, 
and the disease experiences of the cohort and that of the general population may well 
not be comparable. The best known example of this lack of comparability is the 
so-called 'healthy worker effect'. The employed population is generally healthier than 
the nonemployed population of the same age, and their death rates for many causes of 
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Fig. 1.2 Evolution of the 'healthy worker effect' following entry into the study: 
Swedish build.ing workers. The permission of Drs A. Englund and G. 
Engholm to reproduce this figure is gratefully acknowledged. -. Cancer 
incidence (SIR); - - - cancer mortality (SMR); total mortality 

I 
(SMR) 

Length of follow-up [years] 

death are lower than the corresponding rates in the general population (Fox & 
Goldblatt, 1982). Cancer death rates appear to suffer less from the healthy worker 
effect than rates from most other causes, and cancer incidence rates probably are less 
affected than cancer death rates (see Figure 1.2). 

The cohort may also be a selected subgroup of those exposed to the agent of 
interest. In both the Welsh nickel workers and Montana smelter workers studies 
considered throughout this monograph (see Appendices ID and IE), exposure was 
markedly higher before 1925 than in later periods. To qualify as a cohort member, 
however, individuals had to have been employed at the respective plant at some date in 
the 1930s or later. It may well be that employees not included, -for example, itinerant 
workers given the dirtiest jobs or those retiring early for reasons of health - differ both 
in their exposure and in their response from those included in the study. The cohort 
would then represent a biased selection of all those employed. This bias does not of 
course affect the inferences that are applied to the study cohort, but does affect the 
generalizability of the conclusions to all those working at the plant. 

(c) Effects are more efficiently studied of exposures that are both rare in the general 
population and responsible for only a small proportion of any specific cancer. For many 
of the agents listed in Table 1.5, the cohort approach was taken to study the possible 
carcinogenic hazard because the exposure was rare. Only a very small proportion of 
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cases in the general population would have been associated with it, and a population- 
based case-control study would contain too few exposed cases to be informative. 
Cohort studies are sometimes claimed to be the approach of choice whenever an 
exposure is rare, but if a rare exposure is responsible for a substantial proportion of the 
cases of some cancer, presumably itself rare, then a case-control approach may well be 
more informative. Thus, the evidence relating adenocarcinomas of the vagina in young 
women to prenatal exposure to diethylstilboestrol, in general a rare exposure, comes 
essentially from case-control studies. In at least one prospective study of individuals 
exposed transplacentally to diethylstilboestrol no case of the disease was observed 
because, although the relative risk is very high, the baseline incidence from which the 
relative risk is calculated is extremely low. The associations of asbestos with 
mesothelioma and of vinyl chloride with angiosarcoma of the liver are also clearly 
demonstrated by a case-control approach, although quantitative aspects of the 
relationship may not be well estimated. 

(d) Pre-disease information on biological parameters is available. Many physiologi- 
cal or biochemical measures, for example of nutritional status, will be modified by the 
disease itself, and observations taken on cases would be of doubtful value for 
etiological studies. As an illustrative example, in the early and mid-1970s, a series of 
case-control studies of hepatocellular carcinoma was performed investigating the 
differences in the prevalence of the carrier state of the hepatitis B virus surface antigen 
between the two groups. A much greater prevalence of the carrier state was seen 
among the cases in studies from a number of different countries (Szmuness, 1978). The 
etiological significance of this difference, however, was not accepted until it had been 
shown in a prospective study from Taiwan (Beasley et al., 1981) that the same 
differences in rates between carriers and noncarriers were observed even when the 
carrier state was ascertained years before the onset of disease. The findings of several 
prospective studies have now been published, confirming the Taiwan study, and the 
association is regarded as definitively established. 

A second example is given by the present great interest in the role of micronutrients 
in cancer etiology. Since retrospective recall of diet gives only a weak indication of 
intake of specific micronutrients, attention has been focused on physiological measures 
of levels of vitamins and trace elements. For these measures to reflect etiology, rather 
than simply the presence of disease, the requisite biological samples have to be taken 
some time before onset of disease, thus necessitating a prospective cohort approach. 
Existing banks of biological materials can be of great value in this context, forming 
potentially the basis for historical cohort studies. As frequently happens with material 
being used for a purpose not envisaged when it was collected, the condition of the 
collection and storage may not have been optimal, may even have been inadequate, for 
the parameters of current interest. Care must also be taken to ensure that samples 
from cases are not manipulated, for example thawed and refrozen, more frequently 
than the samples taken from the rest of the cohort. 

(e) Information obtained retrospectively may be essentially too inaccurate to be of 
use. Exposure to aflatoxin, say, might be estimated by dietary recall combined with 
tables of aflatoxin levels in common foodstuffs, but one would not expect such 
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estimates to be accurate. The only way to obtain accurate measures of exposure is by 
direct observation of aflatoxin intake, either by assaying diet or measuring aflatoxin 
levels in body iluids. In another setting, quantitative estimates of exposure to benzene 
might be attempted by means of job histories linked to occupation-specific environ- 
mental measures, but better estimates of exposure are again clearly obtained by direct 
observation. The difficulty of interpreting past exposure measurements is well 
illustrated by the correspondence following the study of Infante et al. (1977) on 
benzene and leukaemia. The prospective study of gas workers in the United Kingdom, 
reported in 1965 and 1972 (Doll et al., 1965, 1972), was initiated in 1953 because job 
histories could not be obtained retrospectively with acceptable accuracy. Assessment of 
exposure by biological monitoring has received increasing attention in recent years. 
Levels in the blood or in the urine of the compound itself or its metabolites can give 
measures of individual exposures, and this approach holds great promise for future 
prospective studies (Vainio , 1985). 

(f) Repeated measurements can potentially be obtained. With an extended period of 
follow-up, serial measurements of the exposure may be possible. One consequence is 
that variables that have a time component are more accurately determined. A second 
consequence is that one can study the effect of changing levels of exposure. In breast 
cancer, for example, changes in weight may be of as much importance as weight just 
prior to diagnosis. Studying the effect of changing exposure levels provides one directly 
with estimates of the effect of intervention, although without the element of 
randomization. A third consequence is that misclassification rates or errors of 
measurement of exposures and of confounding variables can be assessed in unbiased 
fashion for the general population and for individuals destined to develop the disease 
of interest. These estimates can be used to infer the real rather than the apparent effect 
of exposure (Clayton & Kaldor, 1985). The use of prospective studies to generate 
repeat measurements of the variables of interest, and to use these repeat measure- 
ments to obtain estimates of the real disease-exposure relationship, is an area worth 
further elaboration. 

(g) For some purposes, one requires not relative but absolute measures of risk. 
Cohort studies provide direct estimates of incidence rates, as opposed to the ratios of 
rates estimable from case-coqtrol studies. Both for public health decisions and for the 
study of the mechanisms of carcinogenesis, incidence rates, giving as they do absolute 
measures of risk, may sometimes be preferable. 

1.3 Limitations of cohort studies 

In spite of their advantages, a history of cancer epidemiology indicates that cohort 
studies have not been the major avenue of attack. Case-control studies have 
predominated. The limitations of cohort studies are summarized below. 

(a) Prospective cohort studies imply a commitment over many years, and both 
individuals and granting agencies are loath to embark on a project that will not yield 'its 
main results for a decade or more. Furthermore, collecting accurate information on 
more than a short set of variables from the large number of individuals required for a 
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cohort study may be very expensive. The use of case-control comparisons within a 
cohort (see 91.4i and Chapter 7) may reduce the workload involved in processing the 
data, but the costs of collecting the data still have to be taken into account. 

(b) Historical cohort studies do not suffer from this extended commitment into the 
future, but they can obviously be performed only if a relevant cohort can be identified. 
For many exposures, the existence of such a cohort with accurate records of exposure 
dating back ten or more years cannot be guaranteed. Furthermore, even if a cohort 
which seems to approximate to the requirements of the study can be identified 
historically, information on other variables which may play an important confounding 
role is likely to be lacking. Thus, one can study diabetics as a group likely to consume 
greater than average quantities of artificial sweeteners, but the incidence of bladder 
cancer in the group is difficult to evaluate in the absence of information on 
smoking - less common among diabetics. The difficulty of evaluating the significance of 
moderate excesses of lung cancer among industrial cohorts for whom smoking histories 
are not recorded is well known. 

(c) Most cancers are rare diseases. Even taking one of the most frequent 
cancers - breast cancer among women over 50 years of age from western countries - no 
more than one or two cancer cases could be expected per 1000 women per year. For 
most other cancers, the expected numbers would be considerably less. In fact, for rare 
cancers, cohort studies are unlikely to be of much value, unless the relative risk 
associated with the exposure under study is very large. Questions of power are 
considered in some detail in Chapter 7, but as a noteworthy illustration of the point, in 
the prospective study of British doctors, the association of smoking with bladder 
cancer, notwithstanding an observed increase in risk for current smokers of twofold, 
was not significant. Bladder cancer, although not one of the most common cancers in 
the United Kingdom, is also not one of the m.ost rare, but nevertheless the number of 
cases was insufficient to demonstrate the effect convincingly. Given the relative ease 
with which a series of several hundred cases of cancer at many particular sites can be 
assembled, it is clear that on most occasions a comparison of the effort or cost per case 
included in the study will favour the case-control rather than the cohort approach. The 
justification for a cohort study has to be based, usually, on the superiority of the 
information it can yield. 

(d) It is difficult to obtain estimates of attributable risk. On many occasions, there is 
interest not only in the degree of risk associated with a certain exposure, but also the 
importance of that risk in the general population. For a given cancer site, this can be 
expressed as the population attributable risk, a quantity which population-based 
case-control studies can provide in straightforward fashion. Many cohort studies, 
however, are based purposely on groups with a much higher prevalence of the relevant 
exposure than the general population and so cannot give estimates of the population 
attributable risk; when the results are extrapolated to the general population, bizarre 
conclusions can be drawn (as for example the unpublished but widely quoted report 
from the US National Institutes of Health on the proportion of cancers due to 
occupational exposures). Even cohorts such as the British doctors or US veterans differ 
sufficiently from the general population, in terms of economic level for example, to 
make extrapolation in terms of attributable risk hazardous. 
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The preceding discussion of the merits and drawbacks of a cohort study relative to a 
retrospective case-control study suggests that the two approaches have complementary 
attractions. The cohort approach provides a well-defined population from which cases 
can be identified in an unbiased manner, and for which some contemporary 
information on .the exposure of interest will be available throughout the time period of 
interest. Time variables for this exposure may also be well recorded. The case-control 
approach concentrates effort on the informative individuals, that is the cases and a 
suitable set of controls, on whom extensive information on confounding variables may 
be obtainable. In an increasing number of situations, study designs are being used that 
incorporate the case-control approach within a cohort study, to take advantage of the 
merits of both approaches. These designs are discussed further in 91.4i and in detail in 
Chapters 5 and 7. 

1.4 Implementation 

The major concern in assembling a cohort for study is that the size and level of 
exposure of the cohort be sufficient to yield meaningful results. The two questions that 
arise are, first, is the study worth doing and, second, how should it be implemented. 
Chapter 7 considers the question of statistical power, a major element in assessing the 
potential informativeness of a study. In this section, we treat a range of issues which 
arise in the implementation of a st~idy. 

The design and execution of a cohort study will depend on the individual 
circumstances of the study, and on its aim. It is instructive to examine in detail the 
methods used in a number of studies, and for this purpose we give an extended 
account, in Appendices IA-IF, of the implementation of different types of cohort 
study - six in all. The studies vary widely in many respects. The study of atomic bonb 
survivors has been the largest single programme of research in chronic disease 
epidemiology. The Life-Span Study, on which the majority of the mortality results are 
based, forms both an infrastructure from which a broad range of activities has evolved 
and the main source of information on the cancer risks associated with radiation 
available at the present time (Committee on the Biological Effects of Ionizing 
Radiation, 1980). An enormous effort has gone into defining the cohort and estimating 
the radiation dose received by each member of the cohort, and to ensuring the 
completeness of follow-up and the validity of the death certificate information. All 
possibly fatal consequences of radiation exposure were included in the scope of the 
study. 

By contrast, the hepatitis B prospective study was targeted closely on the association 
between the hepatitis B surface antigen carrier state and risk of primary liver cancer. A 
particular effort was made to confirm primary hepatocellular carcinoma as the cause of 
death, but otherwise the formation of the cohort and the follow-up procedures 
depended mainly on existing facilities. 

Even though the scope and purpose of different studies may vary widely, however, 
there are a number of issues in the design and execution that require attention, 
irrespective of whether the study is prospective or historical. These questions include 
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the following: 

(a )  Who should be included? 
( b )  What dates should be taken for each individual as the date of their entry into the 

study, and their date of exit from the study? 
(c)  What follow-up mechanisms or systems are to be used, and to what extent will 

demands of confidentiality impinge on the completeness of follow-up data? 
( d )  What endpoints will be used for assessing disease occurrence, and how are disease 

categories to be coded? 
(e )  What information should be obtained on exposure, and how often during the 

period of follow-up can it, and will it, be assessed? 
(j) What information is available on other exposures, which are either of intrinsic 

interest or of importance as potential confounding factors? 
(g) What comparisons will be made to assess the effect of exposure? 
( h )  What power will the study have to detect the levels of excess risk that might 

realistically be expected? 
( i )  Can a case-control approach be introduced into any component of the study, to 

improve feasibility or reduce costs, without reducing the information content? 

(a )  and ( b )  Who should be included, and how are dates of entry and exit deJined? 

The main requirement is that inclusion rules be clear and unambiguous. For each 
individual, the date on which observation begins must be well defined; after that date 
the individual contributes person-years of observation and is at risk to contribute 
events of interest. Table 1.8 summarizes the definition of the study cohort for the six 
studies described in detail in Appendices IA-IF. For each study, it is clear who is a 
cohort member, andfrom what date cohort membership starts. If should be stressed 
that an individual does not enter the cohort, and contribute person-years at risk, until 
all entry criteria have been satisfied. Thus, in the South Wales nickel workers study, an 
individual is included and starts to contribute person-years of exposure at the date on 
which his second appearance on a pay sheet occurs, not on the date of his first 
appearance on a pay sheet. 

The date of exit from the study is the last date on which an individual could 
contribute person-years at risk. In every study, a date has to be specified as the end of 
the follow-up period for the current analysis. The vital status on that date should be 
ascertained for all cohort members and explicitly tabulated when reporting the study. 
In the Montana smelter workers study, the follow-up was originally to 31 December 
1963, and later extended to 30 September 1977. Follow-up status in the original and the 
extended study is displayed in Tables 1.9a and 1.9b. For those whose vital status was 
known at the given date, the date of exit from the study is that date or the date of 
death - whichever is the earlier. Those whose vital status is not known at the end of 
follow-up will have been lost to follow-up, and the correct procedure is to terminate 
their follow-up on the last date their vital status' is known. 

It is important to note that date of entry into the study and date of first exposure are 
not necessarily the same, and will often be different. In the South Wales nickel workers 



Table 1.8 Cohort definition in the studies described in Appendices IA-IF 

Study Source records used to define cohort Inclusion criteria Date of entry into cohort (i.e., into follow-up 
for calculation of person-years) 

British doctors UK medical register 

Atomic bomb survivors National census data, 1 October 
1950 

Taiwan hepatitis study Taiwan government employees 

South Wales nickel Company employment records 
refinery (weekly pay sheets) for first 

week of April, 1934,1939, 
1944,1949 

Montana smelter Company employment records 
workers 

North American Union membership records, 
asbestos workers 1966 

Satisfactory reply to a mailed questionnaire, 
posted on 31 October 1951 

Japanese citizens, present in city at time of 
bomb, resident in city at census date, place of 
family registration in or near city (later 
re la~ed)~ .  All individuals within 2500 m of 
bomb hypocentre ATB, plus a sample of those 
more distant than 2500 m 

Presented themselves at Government 
Employees' Clinic Centre for a routine free 
health examination, and agreed to provide an 
extra sample of blood 

lncludedb on at least two of the four pay sheets 
used 

Employed for at least one year before 31 
December 1956 

All union members in 1966, alive on 1 January 
1967, for asbestos study; asbestos and 
smoking study limited to I I 656 individuals 
who completed and returned a questionnaire 
on smoking habits 

1 November 1951 

1 October 1950 

Date of visit to Clinic 

Date of the second pay sheet on 
which individual appears P CJ 

0 

At end of 1 year's employment or 
2 

1 January 1938 if employed for 
more than 1 year before that 
date 

1 January 1967 

- 

aWhen the original cohort was assembled, a 'reserve' group was included who satisfied all criteria except that their place of family registration was distant from either city. This 'reserve' group 
was added to the rest of the cohort during the follow-up period (Beebe et a/., 1977) 

b ~ h i s  criterion refers to the oriainal cohort described in the first o a ~ e r  (Doll eta/., 1970). The cohort was later extended 
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Table 1.9a Status of study group, 31 December 1963" 

Known to be living 5397 
Employed by smelters 1471 
Pensioned 389 
Otherb 3537 

Known to be deceased 1877 
Vital status not known 773 

Total study group 8047 

a From Lee and Fraumeni (19691 
Includes persons receiving benefits or making claims to Bureau of Old 

Age and Survivors Insurance after December 1964 

Table 1.9b Follow-up status of study groupa 

Follow-up status, Total study Follow-up status, 31 December 1963 
30 September 1977 group, 1977 

Known to be Known to b e  Vital status 
living deceased not known 

- - - - 

Known to be living 3 7 0 7 ~  3342 0 365' 
Known to be deceased 3522 1534 1877 11 1 
Vital status not known 816 520 0 296 
Total, 1963 8 0 4 5 ~  5396 1877 772 

a From Lee-Feldstein (1983) 
Includes 442 men still employed at the smelter on 30 September 1977 

CApproximately half of the men reported lost to follow-up by Lee and Fraumeni (1969) were 
found to be alive on 30 September 1977 

Two persons in the original study group of 8047 were women; they have been deleted from 
the present study 

study, at least five years had to elapse after first exposure before entry into the period 
of observation. For many in the cohort, employment began ten, 20 or even 30 years 
before follow-up began. Among the atomic bomb survivors, five years elapsed between 
exposure and the census that defined the cohort. In some studies, it is possible to 
ensure that follow-up begins as soon as exposure occurs, but this is not usually so. A 
distinction has been made, mainly of interest in the occupational setting, between 
so-called 'prevalence cohorts', consisting of all those employed on a particular date, 
and 'incidence cohorts7, consisting of all those first employed between two dates. The 
possible problems of interpretation when using prevalence cohorts have been men- 
tioned earlier. 

( c )  Follow -up mechanisms 

Follow-up over time of the individuals enrolled in a cohort study is the essential 
feature of the study. The success with which the follow-up is achieved is probably the 
basic measure of the quality of the study. If a substantial proportion of the cohort is 
lost to follow-up, the validity of the study's conclusions is seriously called into question. 
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Table 1.10 Completeness of follow-up in a number of cohort studies 

Study 

British doctors 

Atomic bomb survivors 

Taiwan hepatitis study 

South Wales nickel 
refinery workers 
Montana smelter 
workers 
North American 
asbestos workers 

Date of end of follow-up 

Males: 1 November 1971 
Females: 1 November 
1973 

31 December 1978 

31 December 1971 

30 September 1977 

31 December 1976 

Proportion with unknown vital status at that date 

103 (0.3%) from 34 440 
61 (1.0%) from 6194 
(Authors estimate that at most 'a dozen' out of 
some 10 000 deaths would have been missed) 
The follow-up depends on the national family 
registration system. Only 9 (0.7%) of 1300 
known deaths were not recorded by the system 
in a pilot investigation (Beebe eta/., 1962). 
Losses to the cohort from emigration were 
estimated to be less than 100 (0.1 %) by the end 
of 1974 (Beebe et a/., 1977) 
Passive surveillance: 74 (0.3%) from 22 707 
Active surveillance: 74 (1.1%) from 6908 
37 (3.8%) from 967 

816 (10.1 %) from 8045 

100% follow-up, according to the investigators 
(Hammond et a/., 1979) 

The loss to follow-up reported in the studies described in appendices IA-IF is shown in 
Table 1.10, and indicates the target to be achieved. It is worth repeating the point 
made in an earlier section that case-control studies, insofar as they can be interpreted 
in a cohort context, would rarely achieve comparable coverage. In situations where 
new or untried follow-up mechanisms are to be used, a pilot study of their efficacy is 
recommended, as performed in the atomic bomb survivors study (see Table 1.10). 

The purposes of the follow-up process are threefold: 

(i) to determine which cohort members are currently under observation, by 
recording deaths and losses due to migration, i.e., to determine the denominator 
information; 

(ii) to determine the disease events that are the defined endpoints of the study, i.e., 
to determine the numerator information; and 

(iii) to obtain further information on the cohort members. 

(i) Determination of denominator information 

The mechanisms to be used for follow-up vary from country to country, depending 
on the national systems of population registration and on local laws on confidentiality. 
If the cohort is defined in terms of an occupational or professional group, or 
membership of a health insurance plan, then these group records often provide an 
accurate mechanism for follow-up. In Scandinavian countries, each individual has a 
unique identifying number which is in common use, accurate records of death using 
this number extend back over decades, and population rosters exist listing all persons 
presently living in the country. In principle one can therefore ascertain from among 
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cohort members who has died in the country, who is currently alive in the country and 
thus, by default, who has left the country at some time in the past. This last group can 
be investigated further to determine the date of exit from observation. In England and 
Wales, linkage to death records can usually be achieved easily and with little error, but 
verification that the individual is currently alive and living in England and Wales is in 
general cumbersome. In the British doctors study, attempts were made to contact each 
individual at the end of the follow-up period to ascertain vital status. A range of 
mechanisms is available in other countries, which is of varying utility for cohort studies. 
In some countries, the contents of a death certificate are confidential, and it is illegal to 
know the cause of death. 

Since many cohorts under study are defined in terms of membership of a particular 
group (professional body, occupational pension plan, union, health insurance plan, 
college alumnae), then, provided individuals remain members of the group, sup- 
plementary information from group records may be available, particularly on present 
vital status. For some cohorts, records kept by the group may be superior to the 
national system. The British doctors study, the Taiwan hepatitis study and the 
American insulators study used group records to ascertain vital status, and, as can be 
seen in Table 1.10, the losses to follow-up were small. 

An issue that needs special attention if group membership is related to employment 
is the question of retirement. Loss to follow-up among the retired, if it achieves 
appreciable proportions, can vitiate a study, particularly since retirement can be caused 
by ill-health. Increased mortality soon after retirement is a common observation. 
Efforts made to trace those who had retired received special attention in the report on 
the Taiwan hepatitis study (see Appendix IC). 

On occasion, -follow-up may be active in the sense that the investigators attempt to 
see each cohort member on a regular basis. Such an approach can clearly be expensive, 
and it has tended to be used mainly when the cohort is already under some form of 
clinical care. Thus, in an early study of women irradiated for cancer of the cervix, on 
the routine post-treatment visits made by the cervical cancer patient to her treatment 
clinic, further investigations were carried out as part of the study - notably, haematol- 
ogical studies, since leukaemia was the main endpoint of interest at that time 
(Hutchison, 1968). In the Taiwan study, hepatitis B surface antigen carriers and a 
negative group of equal size were followed actively, with an annual examination. This 
active follow-up was undertaken partly to verify the completeness of the passive 
follow-up mechanism, and partly for sequential determination of hepatitis B virus 
status. 

On occasion, acquisition of information on death and migration for every member of 
the cohort may involve greater expense than the study can meet. If the endpoints of 
interest can be ascertained on all cohort members, for example from a cancer registry, 
then a less complete approach could be considered to enumerate the relevant 
denominator. Two possibilities offer themselves. First, one can carry out the follow-up, 
for the purposes of person-year calculations, on a sample of the entire cohort. If the 
cohort is large, reasonably accurate denominator information may be obtained by 
sampling only a small fraction of the total. Second, one might use an actuarial 
approach and calculate what could be called 'expected' expected numbers, based on 
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population deaths and migration rates. Either approach might be considered in a pilot 
phase of the study, to determine whether a full study was of interest. Section 1.6 treats 
briefly the proportional mortality approach, where denominators are simply ignored. 

(ii) Zdentijication of cancer cases among the cohort 

In many countries, use of cancer registries for ascertainment of cancer occurring in 
cohort members is limited by incomplete coverage on a national level. There is 
considerable risk that individuals will have moved to areas of the country not covered 
by cancer registration. In some countries, however, cancer registration is nationwide. 
Use of the cancer registry to ascertain the cancer cases occurring in the cohort then has 
a number of advantages over use of the usual alternative source of information, 
namely, death certificates. 

First, recording of cancer in cancer registries is often more accurate than on death 
certificates. Greater care is taken to ensure that the registered diagnosis is correct and 
more information is given, particularly on the histology of the cancer. 

Second, more cases should be observed, since many cancers do not lead to death. 
The cases will also be observed earlier, death occurring after diagnosis, often with a 
delay of several years. 

Third, population rates will be available for a wider variety of cancers. Observed and 
expected numbers can be given, for example, for different histological types of lung 
cancer. 

A fourth advantage, of relevance mainly in occupational studies, is that the healthy 
worker effect should be less for cancer incidence than for cancer mortality, and may in 
fact be almost negligible (as in Figure 1.1). 

Notwithstanding the advantages of cancer registry material, a large proportion of 
cohort studies have no choice but to use death certification as the main source of 
information on cancer in the cohort. For all comparisons with national mortality rates, 
it is essential that the cause of death as given in the death certificate be used. Only in 
this way can unbiased comparisons be made. 

(iii) Further information on cohort members 

For analyses, however, in which subgroups of the cohort under study are compared, 
the diagnosis as given on the death certificate may benefit from refinement based on 
additional information. Centralized review of available histological or haematological 
material to ensure uniform classification of subtypes of disease, or simply to confirm 
death certificate diagnoses, can be a valuable exercise. The resulting reclassification 
might be expected to sharpen the analyses performed within the cohort. In the British 
doctors study, for example, confirmation was sought whenever lung cancer was given 
on the death certificate as the underlying or contributing cause of death. 

In the study of North America insulators, it was considered likely that at least 
asbestos-related disease might have been misclassified. Further information, including 
histology sections and X-ray films, was obtained where possible on asbestos workers 
who had died, and a revised cause of death assigned whenever indicated. Table 1.11 
shows the differences in the number of deaths due to different causes between the 
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Table 1.1 1 Number of deaths occurring from five through 35 years after 
onset of work in an amosite asbestos factory, 1941-1945. Cause of death 
coded in two different waysarb 

Underlying cause of death DC BE BE-DC Expected 

All causes 
Cancer, all sites 

Lung 
Pleural mesothelioma 
Peritoneal mesothelioma 
Mesothelioma not specified above 
Larynx, buccal and pharynx 
Oesophagus 
Kidney 
Colon-rectum 
Stomach 
Prostate 
Bladder 
Pancreas 
Other specified sites 
Primary site unknown 

Noninfectious pulmonary diseases, total 
Asbestosis 

Cardiovascular disease 
Other and unspecified causes 
Subtotal, all causes except 

cardiovascular diseases 

a DC, cause of death according to death certificate information only; BE, cause of death according 
to best evidence available 

From Hammond eta/.  (1979) 

death certification and the cause based on the best available evidence. The death 
certificates severely underestimate the number of deaths due to asbestosis, mesotheli- 
oma and, to a lesser extent, lung cancer. More accurate estimates of dose-response, 
and of changing risk with time, are clearly given by the diagnoses based on the best 
available evidence. It is of interest to note that pancreatic cancers were overdiagnosed 
on the death certificates, and the confusion was usually with mesothelioma. What 
appears as a greater than two-fold excess, highly significant statistically, disappears if 
the more accurate cause of death is used. (In this situation, one might legitimately 
compare the refined diagnosis with expectations based on death certificate diagnoses 
since the main source of error, mesothelioma, affects inappreciably the general 
population rates.) 

In the Taiwan hepatitis study, clinical and pathology records were sought for all 
deaths that occurred in the cohort, and primary hepatocellular carcinoma accepted as 
the cause of death only if the evidence was unambiguous. This degree of confirmation 
was required since the aim of the study was precisely to define the risk of primary 
hepatocellular carcinoma among carriers and noncarriers. 
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( d )  Coding of disease 

For many cohort studies, the follow-up period may cover a period of several 
decades. During this time, the codes used both for death certification and for cancer 
registration have changed. Of the International Classification of Diseases (ICD), the 
6th revision was introduced in 1950, the 7th in 1955, the 8th in 1968 and the 9th in 
1978. The World Health Organization has asked member countries to code death 
certificates according to the current revision. Unfortunately, several disease categories 
are subdivided differently in different revisions, confusing the comparisons between 
time periods. The cancer section of the ICD has been disturbed in this way less than 
many other sections, and most investigations extending back to the 1950s or earlier 
have devised tables of equivalence between the different revisions. The equivalences 
given in Cancer Incidence in Five Continents (Waterhouse et al., 1976) are reproduced 
in Appendix 11. 

( e )  Information on exposure, and how often it should be assessed 

The aims of the study. should help to define the detail that is required for the 
information on exposure. In the studies described earlier by Case, exposure was 
described solely in qualitative terms, whether or not employment for more than six 
months had occurred in an occupation with recorded exposure to the compounds of 
interest (e.g., a- and P-naphthylamine, benzidine, aniline). The cohort was classified 
according to the compounds to which individuals had been exposed (see Table 1.4). No 
data were available to quantify the level of exposure. The data, however, were 
considered adequate for the purpose at hand, which was identification of the major 
bladder carcinogens in the chemical industry, and the results sufficed as a basis for 
legislation. Thirty years later, no more quantitative relationship between levels of 
exposure to the aromatic amines and bladder cancer risk in humans has been 
established. 

In contrast, studies on the leukaemogenicity of benzene, although unequivocally 
demonstrating that benzene causes leukaemia in man (Infante et a l . ,  1977; IARC, 
1982b), have been insufiicient at present for societal purposes, i.e., for setting safety 
limits, because of uncertainty over the levels to which the cohorts had been exposed. 
Further studies on benzene would be of value only if quantitative exposure levels could 
be determined for each individual during his period of exposure. 

However, although the degree of quantification possible under different cir- 
cumstances varies, the more quantitative that one can make the relationship between 
exposure and risk, the more it will be of value, for three reasons. First, the credibility 
of the causality of the relationship will be enhanced; second, the greater will be the 
potential for meaningful public health action; and, third, the contribution to an 
understanding of carcinogenic mechansims will be increased. It should be stressed that 
quantifying exposure requires recording not only the level of exposure, but when it 
occurred, for how long and' whether it stopped. These temporal aspects may well be 
more powerful determinants of risk (as discussed in Chapter 6) and are often better 
recorded than is the exposure level. 

To obtain quantitative relationships between exposure and excess risk, information 
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Table 1.12 Information on exposures in the six studies described in Appendices 1A-IF 

British doctors Smoking history from questionnaires. Amount currently smoked and age at 
which smoking started and stopped (for ex-smokers). Questionnaires sent on 
four separate occasions 

Atomic bomb Detailed information on individual dose for each member of the cohort 
survivors 
Taiwan hepatitis One determination of hepatitis B virus carrier status on entry to study 

study 
South Wales nickel Specific job held during each year of employment. Job posts categorized 

refinery workers retrospectively by analysis of associated risk 
Montana smelter Time and place of employment for each job held within smelter. Environmental 

workers measures taken in the smelter enabled each work area to be categorized on a 1 
to 10 scale for arsenic trioxide levels. 

North American No information on level of asbestos exposure. Start and length of employment. 
asbestos workers Smoking history obtained in 1966 

on exposure at the individual level is of the greatest value. Although mean levels for 
the entire cohort are not valueless, since they do give some impression of what dose 
has produced a given excess risk, they do not reflect the fact that the study is 
individual-based, and cannot yield estimates of dose-response. 

The extent and detail of the information on exposure should reflect the relationship 
between exposure and excess risk that the investigator might expect. Table 1.12 
summarizes the exposure data collected in the six studies described in Appendices 
IA-IF. Quantitative models of carcinogenesis, considered in Chapter 6 in some detail, 
suggest some of the required information. First, in relation to time of exposure, for 
each individual one should know the dates at which exposure started and stopped and 
the subject's age when exposure started. It is not unrealistic to expect such information 
to be available if it is based on employment or medical records, or is derived from 
questionnaires. If the exposure information comes from biological markers, however, 
exposure status will be determined only for the time points when the relevant samples 
are taken. The design of the study will then be critically influenced by the hypotheses 
under test. For an example in which this issue is discussed in detail - a prospective 
study relating Burkitt7s lymphoma to infection by the Epstein-Barr virus - see Geser 
and de-The (1972). 

Second, in relation to level of exposure, quantitative information is rarely available 
throughout the period of exposure. Exceptions might be workers exposed to 
radioactivity, who are continuously monitored, or patients given chemotherapy, for 
whom details of treatment should be available. One has to decide which summary 
measures are most informative. For many exposures, average levels during the whole 
period of exposure may be sufficient. For asbestos and mesothelioma, however, the 
levels in the first few years of exposure are likely to be the most relevant and levels in 
the years immediately preceding disease onset almost irrelevant (Peto, J. et al., 1981). 
In contrast, for cigarette smoking and lung cancer, Doll and Hill (1950) found from the 
results of their initial case-control study that among continuing smokers the amount 
most recently smoked was almost as informative as the full smoking history over many 
years. 
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Asking about current practices, or measuring current levels, has the advantage that it 
yields more accurate data than asking about former practices, although its value is 
restricted to prospective studies. It can also take advantage of new techniques for 
measuring metabolite levels in the urine, or binding to macromolecules in the blood, 
which offer the potential of measuring more relevant aspects of an individual's 
exposure. For many occupational or environmental exposures, however, levels have 
fallen steadily over the last three decades. For the determination of the present excess 
risk, the most relevant exposure levels may well be those in operation two or three 
decades ago, simply because at that time they were much higher. Unfortunately, if 
quantitative values are available for exposure levels 30 years ago, the methods used in 
their determination may not be comparable with those used today, or may not even be 
interpretable with more stringent modern criteria. Asbestos measurements, for 
example, taken in the 1940s are difficult to calibrate with modern measurements. 

On many occasions the specific carcinogen may not have been identified, as for 
example in nickel refining, leather and wood working, or arsenic exposure in 
non-ferrous metal smelters. In these circumstances, dose cannot be defined in an 
absolute sense. One may, however, be able to assign degrees of exposure. Such a 
procedure was used when studying the Montana smelters exposed to arsenic, and in the 
most recent publications on the study of the South Wales nickel workers (Peto, J. et 
al., 1984; Kaldor et al., 1986). 

In the Montana study, measurements of atmospheric arsenic trioxide were used to 
categorize working areas as providing heavy, medium or light arsenic exposure (Lee & 
Fraumeni, 1969). Each individual could then be categorized in terms of the jobs he had 
held within the smelter since the start of his empolyment there. It was noted that 
arsenic trioxide measurements were not made throughout the period of exposure, and 
that levels may have varied, but the authors considered that the relative exposure 
levels in different work areas would have remained fairly constant. In the nickel study, 
categorization of work areas was done post hoc, a high risk being associated with 
working in only a few of the refinery work places. 

The degree of exposure defined categorically in this manner can then be used as a 
nonquantitative ordered variable in the analysis, affording the possibility of demon- 
strating a positive dose-response relationship. It may often happen that the categoriza- 
tion of level of exposure that gives the clearest trend with increasing risk will 
incorporate aspects of duration of exposure. 

In prospective studies, the opportunity exists to repeat measurements of exposure, 
so that the degree of measurement error or of intrinsic intra-individual variation can be 
estimated. These estimates can be used to assess the real exposure-disease relationship 
(Clayton & Kaldor, 1985), but the planning of data collection to provide genuine 
estimates of intra-individual variation has at present received little attention in the 
context of prospective epidemiological studies. 

(f) Information on other exposures 

The main weakness of many historical cohort studies is the absence of information 
on potentially confounding variables. The lack will increase the uncertainty of-  the 
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interpretation placed on the results. Two possible approaches could be taken to 
improve the situation. First, for the relevant cases and a series of controls, one could 
mount an intensive effort to obtain the missing information. For a historical cohort 
study that has involved several decades of follow-up, many of the cases may be long 
since dead. One could not expect a high degree of accuracy from a surviving spouse or 
friend on, say, the smoking and drinking habits of someone who had died 15 or more 
years previously. Limiting this case-control accrual of information to cohort members 
alive within five years of the interview should improve the accuracy of the information, 
but may remove most of the cases. A second approach would be to take a sample of 
the surviving members of the cohort and obtain the necessary information from them. 
This information cannot, of course, be handled in the usual way for information on 
confounding variables, by stratification or incorporation in regression models, but it 
can be used to give an estimate of the degree of confounding associated with that 
variable. This estimate has to involve use of external information on the risk associated 
with the confounding variable. The confounding risk ratio would then be calculated as 
in Chapter 3 of Volume 1. 

In prospective cohort studies, one would expect to obtain prospectively some 
information on potential major confounding variables. 

For both historical and prospective cohort studies, it is important that the 
information obtained on confounding variables be reasonably accurate. Approximate 
information, such as one might feel appropriate for factors of secondary inportance, 
can be almost useless (Tzonou et al., 1986). An example is given in Table 1.13, for a 
dichotomous exposure and a single dichotomous confounding variable, the latter being 
observed with error. The level of confounding that remains after the effect of the 
misclassified confounding variable has been taken into account is tabulated for a range 
of situations. Misclassification rates of 30%, not unknown in epidemiology, allow the 
removal of very little of the confounding effect; rates of lo%, which would often be 
considered relatively precise epidemiological measures, leave nearly half the confound- 
ing effect in operation. It is clear that one should attempt to obtain information 
prospectively on the entire cohort only if it is both economic and feasible to collect 
accurate information. Otherwise, the resources are probably better allocated to 
obtaining the information accurately on a case-control basis, concurrently if possible. 
An alternative approach, being developed, is to obtain repeat joint measures of the 
exposure and the confounder, and use the estimates of the joint error distribution to 
estimate the real relationship (Clayton & Kaldor, 1987). 

( g )  The need for the construction of special comparison groups 

In most studies, the comparisons of interest that will be made are either among 
subgroups of the cohort or with the general population. On occasion, however, 
comparisons with an external group or among subgroups within the cohort will be 
insufficient. A separate control group will then have to be constructed. Such a situation 
is seen in the study of insulators, in which the emphasis is on the combined effect of 
smoking and asbestos exposure. To assess the effect of asbestos exposure among 
smokers and nonsmokers separately, one requires mortality rates among smokers and 
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Table 1.13 Bias in the estimation of the summary odds ratio if the 
confounding variable, C, is misclassified but the exposure variable, E, is not. 
The body of the table shows A,, the ratio of the measured odds ratio to the 
true odds ratio (RE)  

p PI h Rc = 2 Rc= 10 

RE =true odds ratio between exposure E and disease 
P = (true) proportion of population exposed to E 
Rc =true odds ratio between exposure C and disease 
pl =proportion of those exposed to E who are also exposed to C 
h = proportion of those not exposed to E who are exposed to C 
6 = proportion of those truly C+ classified as C- 
y = proportion of those truly C- classified as C+ 
W = confounding risk ratio (for estimation of RE) (=estimate of odds ratio ignoring Cltrue odds ratio) 

nonsmokers without asbestos exposure. Since the entire group of insulators was 
considered to have been exposed to asbestos, this requirement necessitated the 
construction of an ad-hoc comparison The procedure is described in Appendix 
IF, where it can be seen that considerable care was taken to match the comparison 
group on socioeconomic and other factors. It is interesting to note that a nonexposed 
control group was also assembled in the atomic bomb survivor studies, consisting of 
people present in the two cities at the 1950 census but not at the time of the bomb. 
Fears were expressed at the outset that this group might not be comparable in a 
number of respects, and it emerged that their mortality rates differed from those of the 
study cohort in ways unrelated to exposure. They were not included in most of the 
major analyses. 

(h )  Power considerations 

Before substantial resources are devoted to a study, the possible results the study 
could. yield need to be investigated. In particular, the level of risk that has a high 
probability of being detected needs to be assessed. In another field, it is becoming 
increasingly recognized that small clinical trials are usually counterproductive. There is 



ROLE OF COHORT STUDlES 35 

little probability that they can detect realistic differences in treatment; the only 
significant differences they can show will almost certainly overestimate the real effect. 
They might be considered biased against the correct result. The same considerations 
apply to small epidemiological studies. Studies that have low power of detecting 
realistic levels of excess risk should not be performed, unless their results can be 
merged with those from other studies. 

Chapter 7 discusses in some detail power calculations for both cohort studies and 
case-control studies. 

( i )  The possible role of a case-control approach within a cohort 

The essential feature of a cohort study is that each cohort member is followed from 
entry into the study to death or to the date at which follow-up ends. There are a 
number of different approaches, however, to the way in which the information on the : 

relevant exposure variables is collected. Gathering the full information on all cohort 
members may on occasion be a waste of resources and so prevent more useful activities 
taking place. Typically, the final comparison will be based on a relatively small group 
of cases and a much larger group of controls. One can therefore take only a subsample 
of the controls without affecting appreciably the precision of the comparison. Omitting 
cases, of course, will lead directly to a loss in precision. The questions to face in the 
design, therefore, are whether and how one can limit the number of individuals for 
whom full information is obtained without jeopardizing either the validity or the 
precision of the study. The problem of precision, and of how the sampling might 
actually be performed, is discussed in detail in Chapters 5 and 7, where different 
sampling schemes are considered. The sample might consist, for example, of sets of 
controls, each set individually matched to a particular case, or it might consist of an 
unstructured subcohort (one in ten of all individuals, say). Designs in which a 
subcohort is chosen at the start of the study to constitute the control group are 
discussed by Prentice (1986). Here we consider the question of validity. The main 
options open to an investigator, set out in Table 1.14, are, first, to wait until the 
deaths (or other events) of interest have occurred, and then to obtain the information 
from only a sample of the rest of the cohort; second, to obtain the information on the 
entire cohort but process it only on a sample; thirdly, to obtain and to process 
information on the entire cohort, but to use only a sample of the entire cohort together 
with all the deaths of interest for the statistical analysis. 

When the investigator can choose his approach, as would be the case in a prospective 
study, the design should specify at the start of the study for each variable under 
investigation the time in the study when information or samples are to be obtained, 
and when assay or processing is to be performed. The aim should be to reduce the 
overall burden of data collection and laboratory assays to the minimum consistent with 
validity, so that attention can be focused on maximizing the quality of the information 
obtained. 

In historical cohort studies the investigator would usually not have the choice. He or 
she would simply have to decide whether further information, such as smoking 
histories, was worth obtaining retrospectively, and there would seldom be much value 



36 BRESLOW AND DAY 

Table 1.14 Possible approaches to data acquisition 

Alternative approaches to Implication, given information required on all Examples and remarks 
the acquisition and deaths (from a given cause) 
treatment of exposure 
variables 

1. lnformation 
obtained only 
on a sample 
of the cohort 

2. lnformation (or 
biological 
specimens) 
collected on all 
the cohort, but 
processed (or 
assayed) only on 
a sample 

3. All information 
available on 
entire cohort, but 
statistical 
analysis uses 
only a sample 

lnformation collected when death 
status is known. Retrospective data 
must be equivalent to prospective 
data, and strictly comparable 
between cases and controls. Neither 
death nor disease state should 
affect the variable being measured. 

Processing or assays performed only 
when death status is known. Long- 
term storage of unassayed samples 
required 

None 

Suitable for genetic markers, or when 
information from other sources is 
available independent of the study. 
No variable in which recall bias may 
operate should be ascertained in this 
manner, nor any metabolic or 
immunological marker affected by 
the disease in question. 

Method of choice when the assay or 
processing makes heavy demands 
on resources (e.g., processing seven- 
day dietary diaries, assaying most 
metabolic and immunological 
markers). Essential to demonstrate 
that storage does not invalidate 
assay, and that records can be 
stored safely 

A useful approach to exploratory data 
analysis (see Chapter 5) 

in obtaining it on the whole cohort. He might also decide that further information was 
required to clarify the results for just one, or a few, causes of death. For example, in a 
study of Danish brewery workers, known to drink large quantities of beer, Jensen 
(1979) found an excess of oesophageal cancer (and of course many other diseases). An 
important question in the epidemiology of oesophageal cancer is whether the exposure 
of importance is alcohol itself or a particular type of alcoholic drink. In this situation, 
was it the beer that caused the excess, or were the oesophageal cancer cases heavy 
consumers of other types of alcohol as well? A subsequent case-control study showed 
that the association was mainly with beer, i.e., that in this cohort of brewery workers, 
heavy beer drinking was sufficient to lead to an excess of oesophageal cancer 
(Adelhardt et al., 1985). 

1.5 Interpretation 

The initial aim of most epidemiological studies is to determine, to the extent possible 
with the available data, whether some exposure represents a carcinogenic hazard. The 
previous section attempted to define what data should be collected for this purpose; 
this section considers how these data may be used. Criteria for assessing whether an 
observed association is likely to be causal were discussed at length in Chapter 3 of 
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Volume 1. Increasingly, however, the demand is not for qualitative evidence of 
carcinogenicity, but for quantification of the degree of risk. The analysis of the results 
of a cohort study should aim to extract the maximum quantitative information that the 
data can yield. The extent to which an analysis produces coherent quantitative 
descriptions of risk depends at least in part on the manner in which the exposure data 
are handled - what composite measures of exposure are used, for example. 

It should be borne in mind that cohort studies are often the result of an unusual or 
even unique opportunity. Prospective studies are rarely undertaken, because of their 
cost and duration. Historical studies are often focused on one of the few cohorts that 
may exist for which there is clear evidence of exposure to the agent of interest. Either 
way, there may be few opportunities to repeat the study, unlike retrospective 
case-control studies, where, for most major sites, a large number of studies have been 
performed. There is thus an added onus on the investigator to exploit his material to 
the full. 

The two major aspects of an observed excess risk that merit attention are indicators 
of a dose-response and the evolution of risk with time. 

(a) Dose-response relationships 

Both to identify the groups at highest risk and to demonstrate a dose-response, 
categorization of exposure is helpful, even if no reliable measure of exposure levels is 
available. Job categories, for example, can be classified as low, moderate or high 
exposure, as in the Montana smelter workers study (Chapters 4 and 5). The data 
themselves may indicate that some jobs comport a particularly high risk, as in the 
South Wales nickel workers (Chapters 4 and 6), although one must be wary of circular 
arguments. In some instances, little information may be available to classify either job 
categories or individuals. In this situation, length of employment may provide the best 
measure of degree of exposure. As mentioned earlier, time variables associated with 
exposure should be accurately recorded in a cohort study. Given the large effect that 
errors of measurement can have on estimates of the maximum degree of risk, and of 
the shape of a dose-response, the accuracy with which time variables are recorded may 
often make them more valuable than less accurate measures of level of exposure in 
distinguishing risk, even if the latter might appear a priori to be more relevant. 

The exposure information available for the six studies summarized in Appendices 
IA-IF is shown in Table 1.12. When adequate dose information is available, one has to 
decide how to incorporate it most informatively into the analysis. In Chapter 4, 
straightforward methods of analysis are described in which categorization of an 
exposure history into a few levels is required. Chapters 5 and 6 discuss how continuous 
exposure levels can be treated in the analysis. In each chapter, the aim is the same: 
how can the data be best utilized to assess causality and to throw quantitative 
relationships into the clearest light. 

(b) Time relationships 

In describing the excess risk associated with an exposure, it is of interest to know not 
only the level of risk that can be expected, but also when that excess is likely to occur. 
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Among continuing cigarette smokers, lung cancer incidence rises with the fourth power 
of duration of smoking. Mesothelioma rates rise as the third or fourth power of time 
since first exposure to asbestos. Excess leukaemia mortality forms a wave with a peak 
at some five years after short-term exposure to radiation. These relationships, 
discussed in greater detail in Chapter 6, indicate that the temporal behaviour of excess 
cancer incidence following carcinogenic exposures exhibits well-defined patterns. These 
patterns may vary from site to site and between exposures, but the pattern of the 
change with time of an observed excess risk can be determinant in deciding whether an 
association is causal. 

An example is given by a follow-up study of women treated by radiation for cancer 
of the cervix, in which a large (fourfold) excess of lung cancer was observed (Day & 
Boice, 1983). Luckily, a nonirradiated group was also included in the study, in whom a 
similar excess was seen, so that the excess was clearly independent of the irradiation. It 
is instructive to. examine, however, the evolution after the radiation treatment of the 
excess lung cancer risk, displayed in Figure 1.3. The change in risk with time is unlike 
that seen for lung cancer in other studies of radiation, in which a genuine 
exposure-related excess was observed. The normal pattern is for the excess to appear 
only some ten years after exposure starts. When examined by age at irradiation (i.e., 
diagnosis of cervical cancer), the picture among those under 50 years of age at 
irradiation is even more extreme than that shown in Figure 1.3, and for women under 
age 40 at irradiation the initial excess was nearly 20-fold. Thus, even without the 

Fig. 1.3 Observed to expected ratios of lung cancer by time since diagnosis of cervical 
cancer for patients with invasive cervical cancer treated with radiotherapy 
and patients with invasive cancer not treated with radiotherapy; 80% 
confidence intervals presented. From Day et al. (1983) 

~ad io therapy  No radiotherapy 

Time since diagnosis of cervical cancer [years] 
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evidence from the nonirradiated group, the shape of the time-risk curve is such that 
one would feel confident that the observed excess risk is not causally related to the 
radiation. An alternative explanation, that the excess lung cancers observed are in fact 
misclassified metastases from the original cervical cancer, fits the observed changes 
with time and age closely. Smoking, an obvious confounder, is responsible for only a 
small part of the excess (Day et al., 1983). 

Apart from the evolution of risk with time since the start of exposure and with 
duration of exposure, the change in risk after exposure stops is also of importance. Not 
only does it aid interpretation, in that a decreasing excess risk after exposure stops 
would be further evidence of a causal relationship, but the effect of removing exposure 
is of major intrinsic interest. It is the main epidemiological guide to the effects of 
intervention measures, and to when public health measures may yield results. Part of 
the analysis of a cohort study should be orientated specifically at this aspect, and in the 
design of the study particular efforts should be made to include those formerly 
exposed. 

( c )  Problems in the interpretation of cohort studies 

A number of issues arise in the interpretation of cohort studies, some of which are 
due to the longitudinal nature of the data acquisition, some of which are common to 
most analytical studies in which emphasis is put on quantification. 

(i) Choice of comparison groups and the healthy worker effect 

For studies in which subcohorts can be distinguished in terms of level or duration of 
exposure, most weight in the interpretation will usually be given to comparisons 
between subgroups within the cohort. Internal comparisons may not always be 
possible, however, and reliance may have to be put on comparisons with population 
rates external to the cohort. The question is then to decide which rates to use. 
Industrial cohorts usually live in urban areas; manual workers smoke more than 
professional and managerial groups; for a variety of reasons national rates may be 
inappropriate. Under these circumstances, one can attempt to use rates for a specific 
socioeconomic group, or for a locality if these are available. The issue of which rates to 
use to calculate expected numbers is well discussed in a report of the UK Medical 
Research Council (MRC Environmental Epidemiology Unit, 1984). 

A common experience when studying cohorts of employed individuals is that the risk 
of dying in the first years after entry into the cohort, i.e., after identification as an 
employed individual, is less than that of the general population. Fox and Goldblatt 
(1982) have shown conversely, using UK census data, that mortality among the 
unemployed is particularly high. ?he reduction in mortality, the healthy worker effect, 
varies between disease categories and appears to be smaller for cancer than for other 
major groups. For cancer, the effect also appears to be smaller for cancer incidence 
than for cancer mortality, reflecting the fact that those with cancer are more likely to 
have left their job. The healthy worker effect tapers off as years pass since entry into 
the cohort, unfortunately confounding any real increase in risk with years since first 
exposure. 
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An analogue of the healthy worker effect may also occur when the cohort is made up 
of those who respond to invitations or mailed questionnaires. In the British doctors 
study, those who replied to the initial questionnaire had, in the first few years of 
follow-up, an overall mortality considerably less than that of all British doctors. As 
Doll and Hill put it: ' . . . there may be some general association between mortality and 
the tendency not to reply to such an enquiry, whether the tendency be due to a 
deliberate refusal (which is rare) or a mere neglect of things (which is frequent). In this 
respect it is perhaps not too fanciful to note that one non-replier died of smallpox and 
another of diabetic coma.' In the controlled trial of breast cancer screening in New 
York, among those invited to screening, the women who accepted had half the overall 
mortality of those who did not attend, even though they were at considerably higher 
risk for breast cancer (Shapiro et al., 1982). 

The healthy worker effect, since it produces lower mortality rates for many causes of 
death, may mask real effects. This masking is particularly difficult to interpret if 
comparisons are made with an external standard population. The more that com- 
parisons are made between different exposure categories within the cohort, the less 
distortion to the overall interpretation will be caused by the healthy worker effect. 

One aspect of the healthy worker effect requires special treatment since it is not 
eliminated by confining comparisons to those between subgroups of the cohort. 
Employment status often changes due to ill health. People may retire because they are 
chronically sick or, because of incapacity, move to lighter work or change jobs. 
Mortality is therefore likely to be particularly high in the year or two succeeding 
changes in employment, and conversely relative low in those not changing employ- 
ment. Odd peaks and troughs may thus appear if risk is examined in relation to time 
since, or time before, change in job category. One means commonly used to alleviate 
this problem is to lag changes in status by a number of years - often two or three. In 
this way, the first year or two after retirement, and the deaths that occur within them, 
are treated as if the individual were still employed. The matter is discussed further in 
Chapter 3 (p. 87). 

(ii) Losses to follow -up 

The validity of a cohort study depends fundamentally on complete ascertainment of 
the events of interest (e.g., cancer deaths) and correct computation of the population 
at risk. Unless at the start of the study one can be confident that losses to follow-up can 
be limited to the levels seen in Table 1.10, a study should probably not be launched. 

Individuals leave the population at risk either through death, or through migration to 
a country or region where the follow-up mechanisms of the study are not operative. If 
an individual has left the population at risk, i.e., the observable cohort, but this fact is 
unrecorded, then he will continue to contribute to the person-years at risk, but can no 
longer contribute to the events of interest. Mortality and incidence rates for each cause 
will be biased downwards. An evaluation of the extent to which follow-up losses have 
occurred is important, documentation of low loss rates adding to the credibility of the 
results. Thus, at the date chosen as the end of follow-up, the status should be 
ascertained of those still thought to be active members of the cohort and under 
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observation. The proportion not found gives the proportion lost to follow-up. In some 
situations, this ascertainment may be laborious, and it might be undertaken on a 
sample, if selected in unbiased fashion. 

(iii) Biases due to errors of measurement 

One of the advantages of cohort studies over case-control studies is that information 
on exposure is obtained before disease status is ascertained. One can therefore have 
considerable confidence that errors in measurement are the same for individuals who 
become cases of the disease of interest, and the remainder of the cohort. The 
complexities possible in retrospective case-control studies because of differences in 
recall between cases and controls do not apply. Measurement error will bias estimates 
of relative risk and standardized mortality ratio (SMR); the extent of the bias is 
indicated in Table 1.15 for different rates of misclassification. 

The shape of dose-response curves, and not just their overall level, will also be 
altered by error in measurement (Doll & Peto, 1978). A linear dose-response, for 
example, may be transformed into one concave upwards, concave downwards, or 

Table 1.15 Bias in the estimation of the odds ratio associated with a dichotomous exposure variable 
in a case-control study if there is misclassification of exposure levels. The body of the table shows the 
ratio of the odds ratio estimated using misclassified data to the true odds ratioa 

p B RE = 2 q = 10 

a = 0 0.1 0.2 0.3 0.4 0.5 a = O  0.1 0.2 0.3 0.4 0.5 

a From Tzonou et a/. (1986) 
RE =true odds ratio between exposure E and disease 
P = (true) proportion of population exposed to E 
a= proportion of those truly E+ classified as E- 
,9 = proportion of those truly E- classified as E+ 
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Table 1.16 Effects of misclassification on the shape 
of a linear dose-response curve - exposure grouped 
into three categories 

Real exposure 

Low Medium High 

Misclassification matrix 

Observed Low 0.65 0.175 0 
exposure Medium 0.35 0.65 0.35 

Hlgh 0 0.175 0.65 
Relative risk of real 

exposure 1 .O 5.0 9.0 
( a )  Creation of a dose-response curvilinear upwards 
Real distribution of: 

Control population 76% 16% 8% 
Case population 33% 34% 33% 
Observed relative risk 1.0 2.2 6.3 

( b )  Creation of a dose-response curvilinear 
down wards 

Control population 33% 34% 33% 
Case population 6.7% 33.3% 60% 
Observed relative risk 1.0 4.4 4.4 

linear with lower slope. What happens will depend on the distribution of the exposure 
in the cohort under study, and on the misclassification rates. Examples are given in 
Table 1.16. 

Interpretation of the results will be sharpened if information is available on the 
misclassification rates, and, in this respect again, cohort studies, particularly prospec- 
tive studies, have a clear advantage over case-control studies. Contact with the study 
cohort during the period of follow-up will permit assessment not only of the change in 
exposure variables during this period, but also estimation of the misclassification rates. 
These rates are then equally applicable to future cases and to the controls, and valid 
adjustments can be made to the observed relative risk and dose-response curves and 
also to the corresponding confidence intervals. Furthermore, correct use can be made 
of information on confounding variables (Clayton, 1985; Clayton & Kaldor, 1987). 
One should note, however, that repeating the same questionnaire may well not provide 
a second, independent observation; it may simply repeat the same errors. A more 
subtle approach will often be required. In case-control studies, repeat measurements 
are rarely available and, if at all, only on the controls. Their applicability to the cases 
will be questionable. 

(iv) Lack of information on confounding factors 

In an earlier section, we considered how information on confounding variables might 
be acquired. In many historical cohort studies, however, no opportunity will exist for 
further data collection, and one is left with the problem of interpreting the results, 
knowing that information on an important variable is missing. The way in which a 
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Table 1.17 Excess relative risk of lung cancer among cervical cancer cases 

Proportion in the Relative risk Average relative risk for 
population of lung cancer lung cancer 

Cervical cancer Smokers 71 % 10 (1 0 x 0.71) + (1 x 0.29) = 7.4 
patients Nonsmokers 1 

29% 
Women in the general Smokers 34% 10 (1 0 x 0.34) + (1 x 0.66) = 4.1 

population Nonsmokers 1 
66% 

quantitative assessment can be made of the effect such factors may have had can be 
illustrated by an example from the study of second cancers among patients diagnosed 
with an initial cancer of the cervix (see §1.5b) (Day et al., 1983). The study cohort 
contained 84 000 women diagnosed with in-situ lesions, among whom distant metas- 
tases would be infrequent. Among these women, lung cancer rates were increased 
more than two fold (SMR = 2.1). The question arises as to whether this excess could be 
due to smoking, known to be more frequent among cervical cancer patients from other 
studies. No information was available on the smoking history of the study cohort, since 
cancer registry records were the only source of information. One can, however, 
calculate approximately the excess risk likely to be due to smoking using data from 
other sources. In a study by Buckley et al. (1981), 71% of cervical cancer patients had 
never smoked compared to 34% of controls. Assuming that the relative risk of lung 
cancer among smokers compared to nonsmokers is tenfold, one can evaluate the excess 
relative risk of lung cancer among cervical cancer cases as outlined in Chapter 2 of 
Volume 1 and shown in Table 1.17. The predicted value of (7.414.1) = 1.8 is close to 
the observed value of 2.1 - certainly within the bounds of statistical error - and one 
would feel confident that smoking was a satisfactory explanation of the observed lung 
cancer excess. By contrast, among the 96 000 patients with invasive cervical cancer, in 
the first ten years of follow-up the excess risk of lung cancer was about fourfold 
(SMR = 3.9). This excess is clearly considerably too large to be explicable in terms of 
smoking. 

Thus, use of concomitant information, even on populations distinct from the cohort 
under study, can remove much of the uncertainty due to unrecorded confounding 
factors. 

(v) Multiple comparisons 

In most cohort studies, an assessment will be made of a large number of disease 
categories as endpoints: there may be more than 30 sites of cancer for which observed 
and expected values are compared. Some of these comparisons can be anticipated to 
achieve nominal significance levels just by chance. The situation is often compounded 
by the inclusion in the study of more than one factor of interest, and in the analysis by 
using a variety of ways of examining each factor. Search for interaction .effects, or 
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looking at subgroups defined by several variables simultaneously, will increase further 
the possible comparisons. 

The topic of multiple comparisons was considered in Volume 1, in the context of 
case-control studies, where there may be many exposure variables. In cohort studies, 
the multiplicity of the comparison refers more often to disease categories. Most cohort 
studies, however, are not launched in an intellectual vacuum. Animal experiments may 
suggest the site of action of the exposure; the route of administration may indicate 
which sites are most exposed; preliminary data, from official statistics or proportional 
mortality studies, may have drawn attention to a particular risk. There will therefore 
be one, or a few, sites at which any effect might be hypothesized to occur. Results for 
these sites should be interpreted differently from results for other cancers, which 
should probably be regarded as hypothesis generating, and the significance values 
modified accordingly, for example by multiplying by the number of such sites. For the 
former sites, a stricter interpretation in terms of hypothesis testing would be 
appropriate. Feinleib and Detels (1985) refer to the reporting of results, nominally 
significant but outside the original aim of the study, as 'post-hoc bias7. 

(vi) Identification of forerunners of disease, rather than causes 

We have stressed one powerful feature of cohort studies, that measures of 
physiological status can be made before the appearance of disease clouds the picture. 
Care must be taken, however, to ensure that the levels of a particular metabolic 
parameter have not been influenced by a preclinical disease state. An association that 
appears to be causal may be a reflection of an early state of disease. A number of 
reports in the late 1970s and early 1980s indicated that serum cholesterol levels were 
low in individuals who subsequently developed cancer. One interpretation was that low 
cholesterol levels predispose to cancer. An alternative was that in the year or two 
immediately preceding clinical onset, low cholesterol levels may be the result of early 
disease (Rose & Shipley, 1980). Opinion now favours the second of these explanations, 
since low levels are seen only immediately before clinical onset, and not five or more 
years before. A review is given by McMichael et al. (1984). A similar fate seems to 
have overtaken earlier reports of low retinol levels observed before cancer onset (see 
Wald et al., 1980; Kark et al., 1981). The lesson to be drawn is that the association 
must be examined in relation to the time between measurement of the parameter and 
disease onset. If the association weakens steadily as the time interval increases, serious 
doubt would be cast on its interpretation as causal. If the association remains strong as 
the interval increases, however, one would favour a causal explanation. This behaviour 
is seen, for example, in the association of hepatitis B and liver cancer (Beasley et al., 
1981) and the association of the Epstein-Barr virus and Burkitt's lymphoma (de-The et 
al., 1978). 

(vii) Conclusions to be drawn from negative results 

Much emphasis is put on criteria for interpreting positive results, the extent to which 
they can be taken as indicating causality, and on the degree to which they provide 
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quantitative measures of excess risk. For studies in which no excess risk is demonstra- 
ted, a complementary approach should be taken. The data should be examined for 
their adequacy in ruling out a positive effect and for the level of excess risk with which 
they are compatible, and also for whether alternative explanations are possible, i.e., 
whether bias or confounding may have produced an apparently negative result when a 
real effect existed. The evaluation of apparently negative evidence has been the topic 
of a recent publication (Wald & Doll, 1985). The following points are among those that 
should receive attention. 

- What are the confidence limits for the excess risk? In Table 2.10, values are given for 
confidence intervals for the SMR. Clearly, even a moderately sized study, with, say, 
50 events of interest, with an estimated SMR of exactly 1.0, cannot exclude increases 
in risk of the order of 30%. 

-How do the dose levels observed in the present study compare with the levels to 
which other segments of the population are exposed? 

- Had sufficient time elapsed between the start of exposure and the end of follow-up 
for a potential risk to have expressed itself fully? In this respect, it is useful to 
examine the excess risk seen ten years or more after first exposure, for which the 
confidence intervals will usually be considerably wider than for the cohort overall. 

-Is there any reason to suspect that the cohort is at substantially lower risk than the 
general population? In a study of nuns in the United Kingdom, for example (Kinlen, 
1982), one would expect particularly low rates for cancer of the oesophagus since 
they use neither alcohol nor tobacco. The observed excess (11 observed against 5.57 
expected), which numerically would be of marginal interest in most circumstances, is 
therefore of particular note. 

-What is the consistency with other studies? 

1.6 Proportional mortality studies 

An extreme example of loss to follow-up occurs when one has no accurate data on 
the composition of the cohort, but one has a set of death records. The proportion of 
deaths due to each cause arising from a particular cohort is known, but not the 
absolute mortality rates. One is then led to a study of proportional mortality rates, 
comparison being made either with the proportions seen in the general population or 
among subgroups in the study group. A similar situation arises in cancer registries, 
where one may have, for example, information on occupation, but obtained in a way 
not comparable to available census data. One then has a proportional incidence study. 

Proportional studies have been used considerably in descriptive cancer epidemiology 
where, in the absence of corresponding census data, they may draw attention to 
unusual or contrasting patterns of cancer occurrence (Parkin, 1986). In analytical 
epidemiology, proportional mortality studies may be of considerable value in the initial 
stages of an investigation. They may indicate a fruitful orientation for later, more 
rigorous studies, and certainly provide a cheap and rapid way of taking an initial look 
at a set of data. Results of studies of proportional mortality rates suffer from a 
particular difficulty in interpretation, in that a proportionate excess can reflect either an 
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excess in the absolute rate for that disease, or a deficit in the absolute rates for some of 
the other causes. It is unlikely, however, that large proportionate excess rates would be 
produced in this way. The approach is formally equivalent to a case-control study 
based on deaths, in which the cases have died from one cause of death and the controls 
are selected from deaths from all other causes. Seriously biased results can be 
obtained, as for example an apparent strongly protective effect for cigarette smoking 
against dying from mesothelioma (Blot et al., 1980); but, provided one is aware of the 
dangers, useful results can be obtained. 

One must be particularly careful in conducting proportional mortality studies to 
include all deaths, or at least the great majority. Differential exclusion of a particular 
cause of death not only decreases the proportional rate for that disease, but increases 
the proportional rate for all others. Initial reports of an excess risk based on high 
proportional rates from incomplete information may well be modified when more 
complete data are available, as happened with claims of an excess of leukaemia in 
Portsmouth (USA) shipyard workers (see Example 3.7). The problem is compounded 
by the fact that in a full cohort study the extent to which follow-up is incomplete can be 
explicitly stated (as in Table 1.9), whereas, in a proportional study, almost by 
definition, the degree of incompleteness is unknown. If it were known, it would imply 
that sufficient information on the cohort and the follow-up would be available for a full 
cohort analysis to be performed (i.e., calculation of rates rather than proportions). 
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CHAPTER 2 

RATES AND RATE STANDARDIZATION 

Analysis of data from a cohort study involves estimation of the rates of cancer and 
other diseases of interest which occur among cohort members during the study period. 
Cancer occurrence is most appropriately measured in terms of incidence rates, for 
example, as the number of newly diagnosed cases per 100000 person-years of 
observation time. For a variety of practical reasons, however, most of the important 
cohort studies discussed in the preceding chapter used death from disease rather than 
its diagnosis as their principal endpoint. From the point of view of formal statistical 
analysis, it makes little difference what endpoint is selected, and we refer almost 
exclusively to 'deaths', 'mortality' and 'survival7, leaving it to the reader to make the 
necessary substitution of terminology (e.g., 'cases7, 'morbidity' and 'disease-free 
survival7) as required for incidence data. However, since death is often preceded by a 
period of ill health, and the health status of the subject may influence his exposure to 
the agents under investigation, mortality data are subject to particular problems of 
interpretation, as discussed in 81.5~.  Lagging of exposure variables is one means of 
partially accounting for modification of exposures during the interval between first 
appearance of disease symptoms and death. 

Cancer rates vary widely according to sex, age, calendar time and a number of other 
demographic variables. We begin the chapter with a description of procedures used to 
estimate age- and time-specific disease rates from cohort data. The rates may also be 
specific for sex and race. Methods of estimation of incidence rates using cancer registry 
material were also discussed in Chapter 2 of Volume 1, which the reader may wish to 
consult for further elaboration of the concepts of rate and risk and a discussion of 
alternative methods available for their determination. 

Analysis of cohort data typically involves a comparison of the rates observed in the 
study group with rates for the general population. This is a useful way of identifying 
diseases which occur at especially high or low frequency in the cohort, so that they may 
be studied further in relation to particular exposures. Since the age distribution of the 
cohort will generally be different from that of the population as a whole, and may also 
be evolving with time, such comparisons are best made on an age-time-specific basis. 
Thus, the second topic considered in this chapter is the combination of age-time- 
specific cohort rates so as to facilitate their comparison with standard or general 
population rates. Direct and indirect standardizations are presented as the two basic 
methods of summarizing a set of component rates. The corresponding comparative 
measures, known as the comparative mortality figure (CMF) and the standardized 
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mortality ratio (SMR), are introduced and discussed in terms of the advantages and 
disadvantages they offer. We develop methods for evaluating the statistical significance 
of the observed differences in age-time-specific rates between study and standard 
populations, and for putting confidence intervals around the comparative measures. 

A final section briefly describes some analogous procedures for age adjustment of 
proportional incidence and mortality measures that are used to evaluate disease 
frequencies when person-years denominators are not available. 

2.1 Calculation of age- and calendar period-specific rates 

The basic feature of cohort studies that distinguishes them from cross-sectional, 
case-control or other types of investigation is that, at least in principle, each subject is 
kept under continuous surveillance for a defined interval of time. If the study endpoint 
is death, we assume that each subject is 'at risk' of death during the entire interval 
from his entry into the study until his exit. This means that the study period should 
contain no interval during which the subject is known to be alive as a condition of 
cohort membership. If the cohort is defined to consist of all workers with at least five 
years of employment in a certain factory, therefore, the first five years of their 
employment history would be excluded from the observation period. A second critical 
assumption is that any death that actually occurs during the study period will be 
recorded. For cohorts defined on the basis of past records, this implies that adequate 
mechanisms exist for tracing individuals from their date of entry into the study until 
death or until the study's closing date. If no record exists of someone's whereabouts 
after a certain point in time, he should generally be considered as having left the study 
at that point. Obvious problems of selection bias exist if such losses are at all frequent, 
since the causes of and ages at death for 'lost-to-follow-up' subjects may well differ 
from those for persons who are successfully traced. 

The basic method used to estimate age-time-specific mortality rates is to determine 
for each individual the amount of observation time contributed to a given age x 
calendar period category and to sum up those contributions for all cohort members so 
as to obtain the total number of person-years of observation in that category. These 
person-years form the denominators of rates the numerators of which are simply the 
numbers of deaths due to a given disease, likewise classified by age and calendar year 
of death. The process is illustrated in Figure 2.1, which shows schematically the course 
of one worker who was entered on study (point A) at age 43.71 in year 1956.03 and left 
11.12 years later (F). He contributed observation time to five separate cells, boundary 
crossings being made at points B through E. The duration of time spent in each cell is 
easily determined, as shown in Table 2.1. In some applications, particularly when the 
observation period is relatively short, the calendar-year axis is ignored and the rates 
are determined by age interval alone. Computer programs for performing the 
calculations have been developed by Hill (1972), Monson (1974), Waxweiler et al. 
(1983), Gilbert and Buchanan (1984) and Coleman et al. (1986), among others. 

Sometimes the exact dates of birth and of entry and exit from study, which are 
needed to draw Figure 2.1, will not be available. Then, approximate numbers of 
person-years may be calculated as shown in the right-hand column of Table 2.1, using 
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Fig. 2.1 Schema showing the follow-up of one person in a cohort study 

'"I 

1950 

Calendar year of follow-up 

Table 2.1 Calculation of exact and approximate age- and year-specific 
person-years at risk 

-- -- 

Pointa Coordinates (year, age) Quinquinquennium Person-years 

Year Age Exact Approximate 

Total 11.12 11.00 

a See Figure 2.1 



RATES AND RATE STANDARDIZA1-ION 51 

the three integer variables, age at entry, year of entry and year of exit. The 
approximation is based on the notion that a person aged 43 in 1956 will be 44 in 1957, 
45 in 1958 and 54 in 1967. He  contributes 0.5 years of observation time to the calendar 
year of entry (1956), 0.5 years to the year of exit (1967), and a full 1.0 year to each 
intervening year. There would be a single 0.25-year contribution for someone who 
enters and leaves the study in the same calendar year. The discrepancies between the 
exact and approximate figures tend to be averaged out when cumulated over 
individuals, so that the approximate method is sufficiently accurate for most practical 
purposes. 

Cause-specific national death rates are typically published by five-year intervals of 
age and calendar year (Case & Pearson, 1957; Grove & Hetzel, 1968). Such 
'quinquinquennia' are widely used in cancer epidemiology, and our example of the 
calculation of age- and calendar period-specific rates illustrates this standard break- 
down. Analogous methods may be used if the ageltime intervals are longer or shorter 
than five years. 

Example 2.1 
Appendix IE describes in some detail the design and execution of the Lee and Fraumeni (1969) study of 

Montana copper smelter workers, in which 8047 male subjects were entered into study on 1 January 1938 if 
they had worked for at least one year and were still employed on that date, or  at the end of their first year of 
employment for those hired later. Table 2.2 shows the number of person-years in each quinquinquennium as 
determined by both exact and approximate methods for 8014 workers on whom full data were available. 
(Records had been lost for 33 of the original cohort.) These data include the follow-up through 1977 for 
workers who were still alive and under observation on 31 December 1963, the closing date of the original 
study (Lubin et al., 1981). 

The approximate method of calculation, based on integral ages and years, was modified to account for the 
fact that the 2517 men who entered the study at the beginning of 1938 were eligible for a full year's 
observation, whereas those who entered the study later were, on average, observed for only half of the first 
year. Likewise, nine months of observation during 1977 was counted for those still alive and being followed 
at the study's end (30 September 1977). Except for a few discrepancies along the boundaries of the table, this 
adjustment assures that the agreement between exact and approximate calculations is quite good. 

Table 2.3 presents the numbers and rates of deaths from all causes classified by age and calendar period.. 
The rates are based on sufficiently large numbers for most cells that they display a reasonable -degree of 
numerical stability. For many specific causes of death, however, the numbers are smaller and a display of 
the age-period-specific rates in such a detailed manner is not helpful. 

2.2 Summarizing a set of rates 

Large tables of rates confront the investigator with a bewildering array of detail that 
is difficult to assimilate and utilize effectively. Even if attention is focused on a 
particular calendar period or column in Table 2.3, consideration of the rates in 
five-year age categories requires one to look at up to 18 separate numbers. There is a 
clear need for one or two summary measures that are easy to interpret yet retain most 
of the essential information in the age-specific data. 

This section describes the calculation and interpretation of a commonly used 
summary measure, the directly standardized rate. We mention at the outset, however, 
that important information may be lost through use of this and other traditional 
approaches to data analysis. The remainder of the monograph emphasizes alternative 
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Table 2.2 Exact and approximatea person-years of observation in the Montana cohort, by 
age and calendar year 

Age Jange Calendar period 
(years) 

1938- 1940- 
1939 1944 

10-14 0.0 1.2 
0.0 1.5 

1 5-1 9 42.6 208.1 
68.0 164.0 

20-24 645.4 2157.6 
679.0 2301.8 

25-29 690.3 2587.0 
682.5 2647.5 

30-34 689.4 2378.9 
693.0 2354.3 

35-39 607.9 2196.9 
598.5 2186.5 

40-44 482.1 1829.2 
471.0 1784.5 

45-49 451.4 1431.8 
450.0 1426.5 

50-54 470.0 1230.1 
465.0 1226.0 

55-59 424.5 1209.1 
408.5 1206.0 

60-64 308.4 889.9 
315.0 855.8 

65-69 248.4 667.2 
231.0 659.0 

70-74 147.2 425.6 
137.5 399.0 

75-79 49.2 215.3 
45.5 194.0 

' 80-84 14.6 69.0 
11 .O 63.5 

85+ 1.4 13.5 
1 .o 10.0 

Totals 

1.2 
1.5 

871.9 
744.8 

8 688.6 
8 812.8 

14 332.0 
14 496.5 
18 729.9 
18 877.5 
22 168.6 
22 291.8 
24 546.9 
24 665.3 
24 581.9 
24 681.5 
22 593.8 
22 663.3 
19 199.0 
19 170.5 
14 557.9 
14412.3 
10 152.1 
9 974.0 
6 429.1 
6 256.5 
3 303.8 
3 162.0 
1 330.1 
1 241.5 

469.6 
41 9.5 

Totals 5 272.7 17 51 0.5 23 236.3 28 233.4 30 644.7 28 000.3 25 024.5 22 175.7 11 858.2 191 956.3 
5 256.5 17 479.8 23 266.8 28 192.5 30 622.0 28 000.0 25 01 6.0 22 187.5 11 850.0 191 871 .O 

a Exact entries listed above approximate ones for each cell 

methods of analysis that we believe are preferable for analytical epidemiology, namely 
the fitting of statistical models to the age- and period-specific rates in such a way that 
their essential structure is highlighted and purely 'random' fluctuations are identified as 
such. 

( a )  The directly standardized rate 

Direct standardization appears to have been motivated originally by the idea of 
determining the crude disease rate that would be observed in the cohort if its age 
distribution were the same as that of the standard population. The directly standard- 
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Table 2.3 Number of deaths and death rates (per 1000 person-years)a from all 
causes in the Montana cohort, by age and calendar year 

Age range Calendar period Totals 
(years) 

Totals 34 236 282 386 489 550 519 569 339 3404 
6.4 13.5 12.1 13.7 16.0 19.6 20.7 25.7 28.6 17.7 

Standardized rates (1950 US population aged 40-79 years): 
12.8 26.5 26.0 27.9 29.5 23.4 25.0 24.4 22.4 

a Numbers of deaths are listed above the corresponding rate 

ized rate is obtained by applying the age-specific cohort rates to the standard age 
distribution. More formally, denote by dj the number of deaths in the jth of J age 
groups, by nj the person-years denominator, and by ij = d,/n, the corresponding rate. 
In statistical parlance xj is known as an estimate (hence the ^) of the 'true' but 
unknown rate 4 that would be observed if an infinite amount of data were available. If, 
in addition, q denotes the number (or proportion) of individuals in the standard 
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population in the jth age group, the directly standardized rate is written 
J 

as a weighted sum (or average) of the age-specific rates. A denotes the corresponding 
'true' quantity. 

Table 2.4 shows several idealized populations used for direct standardization of 
cancer incidence rates (Waterhouse et al., 1976). Since the weights sum to 100 000, the 
corresponding directly standardized rates calculated from (2.1) will have units of cases 
per 100 000 person-years. The African population is considerably younger than the 
European. The world population, which occupies an intermediate position, has long 
been used by Segi (1960) and associates to standardize cancer mortality data collected 
by the World Health Organization. 

Table 2.5 shows the actual age distributions for 1 000 000 persons in the USA for the 
years 1950 and 1970. Note the effect of the post-war 'baby boom' on the two age 
structures. These figures are often used to standardize the mortality rates of US 
cohorts. 

In order to promote comparability between series, we recommend that a published 
set of weights such as those shown in Table 2.4 or 2.5 be used for direct 
standardization, rather than an ad-hoc set constructed by the investigator. When world 

Table 2.4 Standard populations used for the computa- 
tion of age-standardized and truncated standardized 
incidence ratesa 

Age range African World European Truncated 
(years) 

0- 
1-4 
5-9 
10-14 
15-19 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
80-84 
85 and over 

Total 100 000 100 000 100 000 31 000 

a From Waterhouse et a/. (1976) 
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Table 2.5 Standard million popu- 
lation" of the USA in 1950 and 
1970 

Age range Standard million population 
(years) 

1950 1970 

Total 1 000 000 1 000 000 

a From US Bureau of Censuses (1972) 

weights are used, one speaks of a rate that is 'standardized to the world population'. 
Alternatively, if the weights correspond to an actual age distribution, one would speak 
of a rate 'standardized to the population of the USA in 1950', for example, or  of one 
standardized to 'the population of England and Wales in 1970'. 

Example 2.2 
The crude death rates shown in the penultimate row of Table 2.3 steadily increase as a consequence of the 

general ageing of the cohort over time. In order to summarize the age-specific rates for different calendar 
periods, we calculated directly standardized rates for each one, using the 1950 US population (Table 2.5) as 
the standard. However, only rates for ages 40-79 were included in the calculation since the other age groups 
lacked data for one or more calendar periods. This necessity of discarding relevant data is one of the 
disadvantages of direct standardization. The standardized rates first rise and decline, as is true for most of 
their age-specific components. The initial rise is probably due to the 'healthy worker' selection bias (see 
31.5~) which would apply to a large number of workers in the first calendar period, since everyone followed 
from the beginning of 1938 was still employed at that time. The eventual fall in the age-specific or 
age-standardized rates conforms to the pattern observed in the general population. 

Provided that the same standard age distribution is used in their construction, 
comparison of directly standardized rates between different groups is thought to 
eliminate the differences that are observed in the crude rates solely by virtue of one 
group having a different age structure from another. However, as the graphs of 
zross-sectional age-incidence curves in Figure 2.2 make clear, such comparisons may 
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Fig. 2.2 Relationship between incidence of cancer of the stomach and age in four 
areas: A ,  Iceland; x , Miyagi, Japan; 0, Connecticut, USA; @, Johannes- 
burg & Kampala (African). From Doll and Cook (1967) 

35 40 45 50 55 60 65 70 75 80 8590 
Age (years; log scale] 

obscure important differences in the age-specific patterns. The apparent decline in 
stomach cancer incidence in older Japanese, in contrast to the rising age-incidence 
curve in Iceland, even among the elderly, means that the relative positions of the two 
countries as expressed in the age-standardized rate will depend to a large extent on the 
choice of the standard. If the standard population is heavily weighted towards the 
elderly, Iceland will have a relatively higher age standardized rate, while the reverse 
will be true if the standard population is younger. Doll and Cook (1967), from whose 
work the figure is taken, give several more examples of how the choice of the standard 
population affects the rank ordering of countries in terms of age-standardized incidence 
rates of specific cancers. 

When incidence rates for cancers of epithelial tissues are plotted against age on a 



RATES AND RATE STANDARDIZATION 57 

log-log scale, they are often remarkably close to straight lines, with slopes of 4 or 5. 
Doll (1971) and others have interpreted this basic feature of incidence data as support 
for the concept that such cancers are produced by a series of cellular events. If there is 
curvature in the log-log plot, as in Figure 2.2, it is generally in the downward direction 
(Cook et al., 1969). Sometimes this is due to a 'birth cohort effect', i.e., a general 
increase in rates for successive generations due presumably to the introduction of new 
agents into the personal or ambient environment. In this case, the curves flatten out or 
otherwise assume similar shapes when arranged to present age-specific data for 
successive generations of individuals born in the same time interval (birth cohorts) 
rather than for separate calendar periods. In other situations, possibly including the 
data shown in Figure 2.2, the curvature may represent the failure to diagnose 
completely incident cases among the elderly. Largely for this reason, Doll and Cook 
(1967) suggested that the calculation of summary rates for epithelial tumours be 
restricted to people aged 35-64, and introduced for this purpose the truncated 
population shown in the fourth column of Table 2.4. They argued that the directly 
standardized rate based on this population was a good measure of the average level of 
incidence or mortality, that the ratio of rates for the 60-64 versus the 35-39-year age 
groups measured the steepness of the increase with age, and that the two measures 
taken together provided a basic summary of the age-specific data. 

( 6 )  The cumulative rate 

Cumulative rates are defined by equation (2.1) if one takes for q the length of the 
jth age interval rather than the standard age proportion (see $2.3 of Volume 1). 
Essentially the same measure was introduced by Yule (1934), except that he calculated 
an average of the age-specific rates rather than their sum, and termed the result the 
'equivalent average death rate'. Since the nonzero weights of the truncated population 
are almost constant across the five-year age groups, a rate that is standardized in this 
fashion will be very nearly proportional to the cumulative rate between 35 and 64 
years. 

The cumulative rate has several advantages as a method of reporting cancer 
incidence and mortality data (Day, 1976). First it dispenses with the rather arbitrary 
selection of the standard population, yet has the desired feature of summarizing the 
age-spectific data. Second, cumulative rates for different age ranges are additive. Thus, 
for example, the cumulative rate between 0 and 64 years is the sum of the cumulative 
rates for 0-34 and 35-64 years. Finally, the cumulative rate is easily converted into the 
cumulative risk by means of the formula P = 1 - exp(-A). This is the actuarial 
probability of disease development or death from the cause of interest, in the absence 
of other causes of death, for someone who is at risk throughout the designated age 
range. Since 1 - exp (-A) is approximately equal to A for small A, moreover, the 
cumulative rate can be roughly interpreted as the cumulative risk (actuarial probabil- 
ity), provided that it is small, say less than 10%. See Table 2.6. 

Example 2.3 
Table 2.7 compares cumulative incidence rates between 0 and 74 years to directly standardized rates based 

on two different standard populations (Day, 1976). It illustrates clearly that, while cancer is a 'rare' disease 
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Table 2.6 Conversion of cumulative rates (100A) into the corresponding cumulative 
risks (100(1 - e-?) 

lO0A 0.1 0.5 1 .O 5.0 7.0 10.00 15.00 20.00 30.00 
100(1 - ePA) 0.1 0.499 0.995 4.88 6.76 9.52 13.93 18.13 25.92 

Table 2.7 Cumulative incidence rates, 0-74 years (percent), compared with rates standardized to the 
world populationa, and to the truncated ratea, per 100 000 per annurn 

Population Rate Cancer site 

Stomach Lung Breast Cervix Leukaemia Prostate All sitesb 
uteri 

Male Male Female Female Male Male Male Female 

Cali, Cumulative (%) 7.34 2.14 3.08 8.35 0.38 2.71 29.1 1 29.78 
Colombia World population 57.5 17.5 27.3 75.6 5.2 

Truncated 87.7 29.0 62.6 183.6 5.6 
23'2 (25.25) (25.75) 
2.15 

Alameda Cumulative (%) 2.69 5.85 4.15 3.18 1.05 7.54 30.80 20.81 
County, World population 24.4 43.8 38.6 30.5 8.3 
black Truncated 33.0 88.9 75.0 75.4 8.9 

65'3 (26.51 ) (1 8.78) 
55.6 

Birmingham, Cumulative (%) 3.13 9.73 5.58 1.39 0.52 1.85 30.1 1 21.96 
UK World population 25.2 73.3 51.1 13.6 5.3 

Truncated 35.9 133.5 114.1 34.2 6.2 
8.4 (26.00) (1 9.50) 

10.9 

Japan, Cumulative (%) 11.97 2.16 1.06 2.28 0.36 0.35 24.22 16.30 
Miyagi World population 95.3 15.6 11.0 20.6 4.4 
Prefecture Truncated 164.1 22.6 27.5 52.8 4.7 

3'2 (21.51) (15.04) 
2.0 

a From Doll et a/. (1970) 
bThe figures given in parentheses are the exact cumulative probabilities = 1 - exp (-L) to compare with the cumulative incidence 

A. See text and Table 2.6 

when considered in terms of annual incidence, the total actuarial risk over a normal lifetime may be 
substantial. Japanese males, for example, have a cumulative actuarial risk for stomach cancer of 12%. Since 
the cumulative lifetime risk of many of the common cancers seen in laboratory animals is of the same order 
of magnitude (e.g., 5-40%), it is clear that expressing cancer incidence in such terms offers the possibility of 
more immediate extrapolation between epidemiology and laboratory investigations than does use of annual 
incidence rates (Peto, R. 1977). 

( c )  Standard error of the cumulative or directly standardized rate 

When death rates are computed from national vital statistics, or incidence rates are 
determined from cancer registries that cover large populations, questions of statistical 
or sampling stability are generally of minor importance. Errors inherent in the process 
of data collection, in the coding of cause of death or cancer type, or in the estimation 
of the population denominators are usually of much greater magnitude and concern. 
Rates calculated for study cohorts of limited size, however, may be based on a 
relatively small number of cases. Then, a simple formula for the standard error is 
useful as a measure of the statistical precision with which the rate is determined. 
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The formula given here stems from the elementary statistical model for the sampling 
distribution of a rate that is developed in some detail in 54.2. For the moment it 
suffices to know that the sampling variability of the rate numerator is approximately 
Var (d j )  = njhj, which may be estimated by di itself, and that the person-years 
denominators ni may be regarded as fixed constants. Thus, the standard error of the 
age-specific rate xi, i.e., the square root of the estimated variance, is ~ / n j l  

In order to determine the variance or standard error of the summary rate A = C ?xi, 
we need to know the covariances between the observed numbers of deaths in the 
different age intervals. The covariances are zero if the observations are statistically 
independent. This is true when the rates are estimated from cross-sectional data, for 
then different individuals are at risk in different age intervals. In cohort studies, 
however, the same person may contribute observation time to several contiguous age 
groups. Then, the di are not statistically independent, since the death of an individual 
in one interval precludes his dying in the next. Nevertheless, the discussion in 54.2 
suggests that even in this case the dj may be regarded as being independent for 
purposes of making large-sample statistical inferences. Chiang (1961) argues that the di 
are uncorrelated (see also Keyfitz, 1966). It follows that the standard error is 

Inspection of equation (2.2) emphasizes another potential weakness of direct 
standardization, namely that the a-priori weights y take no account of the precision 
with which the component rates are estimated. The data for a single age interval may 
make a major contribution to the sampling error if the corresponding rate is based on a 
small denominator yet is given a large weight. 

Example 2.4 
We illustrate the calculation of cumulative rates and their standard errors by applying equations (2.1) and 

(2.2) to data from the Montana cohort. Table 2.8 shows the number of respiratory cancer deaths that 
occurred among the smelter workers at ages 40-79 in four calendar periods. The population denominators 
differ slightly from the corresponding entries in Table 2.2, since they were calculated according to another 
approximate method that is described in 03.1. Note that the 40-79-year age range accounts for 
2761288 = 96.5% of the total deaths from this cancer. Since the age intervals are of equal length of ten years 
each, the formula for the standard error may be simplified to 

Cumulative respiratory cancer mortality rates between ages 40-79 are 8.40, 14.07, 13.81 and 14.41% for 
the four calendar periods. These may be compared with cumulative rates of 2.19, 4.21, 6.58 and 8.92% for 
the US white male population for the periods 1940-1949, 1950-1959, 1960-1969 and 1970-1975 (Appendix 
111). Thus the Montana cohort has substantially higher rates in the early decades, but the effect is attenuated 
somewhat by the passage of time. Part of the explanation for the decline in both relative and excess risk is 
that the later calendar years contain more person-years of observation from workers first employed after 
1925, when the smelting process was changed and airborne exposures were presumably reduced (Lee- 
Feldstein, 1983). 

US mortality rates for respiratory cancer are higher than those of the three western states near the smelter, 
namely Montana, Idaho and Wyoming. Use of standard rates from these states alone therefore increases the 
discrepancy between the respiratory cancer rates for the cohort and those for the surrounding general 
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Table 2.8 Respiratory cancer deaths (d), person-years at risk (n, in 
thousands), and death rates ( R  per 1000 person-years) in the Montana 
cohort. Calculation of the  cumulative rate and its standard error 

Age range 
(years) 

Calendar period Totals 

Totals d 
n 
i 

Cumulative rate (%) 
Standard error (%) 

population. Regional rather than national death rates generally make a more appropriate standard, but they 
are often not available for the entire time period of interest or are based on such small populations as to be 
unstable. 

Our next example confirms the basic point that age standardization techniques as 
discussed in this section can obscure important features of the data and should be used 
cautiously in analytical work. 

Fig. 2.3 Thyroid cancer incidence rates, 1935-1975, for Connecticut, USA, age- 
adjusted to the 1950 US population: 0, females; ., males; X, both sexes. 
From Mendelsohn-Pottern et al. (1980) 

1935- 1944 1935-1954 1955-1964 1965- 19.15 

Year of diagnosis 
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Example 2.5 
Figure 2.3 shows age-adjusted incidence rates for thyroid cancer from the Connecticut Tumor Registry by 

sex and ten-year calendar period from 1935-1975 (Mendelsohn-Pottern et al., 1980).. They were calculated 
by direct standardization relative to the 1950 US population (Table 2.5). While they show a smoothly rising 
ir~cidence over the 40-year period, they miss an important feature of the data for females. When the 
age-specific rates are plotted for each of the four periods (Figure 2.4), a clear bimodal age-incidence curve 
emerges for females after 1954, with a first peak between 25 and 44 years of age and a steady increase in 
rates from age 65 on. The first peak was less pronounced in males. It was discovered to be due to increases in 
rates for papillary and follicular carcinomas and was interpreted as probably due to increased childhood 
exposure to therapeutic radiation. 

2.3 Comparative measures of incidence and mortality 

A major goal of standardization, besides combining a set of age-/stratum-specific 
rates into a synoptic figure, is to provide a quantitative measure of the difference in 
rates between the study cohort and a standard population or other comparison group 
that is free from the effects of age or other confounding variables. Rather than taking 
the ratio or difference of the crude mortality rates for cohort versus standard as a 
measure of effect, one first divides the comparison groups into a number of strata that 
are reasonably homogeneous with respect to the confounding variables. The stratum- 
specific rates for both groups are calculated and their differences or ratios are 
summarized in a single comparative figure. Since ratios of age-specific cancer incidence 
rates are typically more nearly constant than are the rate differences (see 82.5 of 
Volume I) ,  a summary ratio is generally the more appropriate measure. However, 
caution must be exercised if, as in the last example, there are substantial variations 
between the comparison groups in the age-specific ratios. In such circumstances the 
investigator is better advised to choose some other measure of effect (such as a rate 
difference) that does remain constant, or else to model the variations in rate ratios or 

. ' rate differences as a function of age and other stratification variables, rather than 
attempting to summarize them in a single number. 

The choice of variables to be used as a basis for stratification or other statistical 
adjustment procedure raises several complicated issues (see 83.4 of Volume 1). One 
generally wants to adjust for variables that are causally related to disease, and the 
differential distribution of which among the comparison groups could therefore result 
in apparent differences in incidence or mortality that are secondary to the causal 
effects. This implies that some prior understanding or hypotheses about the causal 
nature of the disease process necessarily enters into the selection of stratification 
variables. Questions of the statistical significance, in the data under study, of their 
association with either the disease or the exposures are secondary if not irrelevant. Age 
is the paradigm case of a confounding variable since it is usually regarded as an 
independent cause, or at least as a surrogate for the accumulation of independent 
causes, of many cancers and other diseases. 

(a) The comparative mortality figure (CMF) 

A simple summary of the incidence or mortality rate ratios between the cohort and 
standard population that accounts for the possible confounding effects of age or other 
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Fig. 2.4 Age-specific thyroid cancer incidence rates, 1935-1975, for Connecticut, 
USA: . . ., 1965-1975; --, 1955-1964; ----, 1945-1954; 9 

1935-1944. From Mendelsohn-Pottern et al. (1980) 
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variables is obtained by dividing the directly standardized rate for the cohort by the 
standard population rate. Thus if hj* denotes the standard -death rate in stratum j, and 
w, is the standard weight, the comparative mortality figure (CMF) i s  defined by 

Cf=, y d j l n j  
CMF = * c;=, yh, 

The ratio of CMFs calculated for two different cohorts using the same standard rates 
and weights is simply the ratio of the two directly standardized rates. 

When we introduced the concept of direct standardization, the standard weights w, 
were chosen to be equal to the person-years denominators n; of the standard rates. 
With these weights one may write 

C w,djln. C n;dj/nj  
CMF = I - - 

C w,d;/n; D* ' 

where d; and n; denote standard deaths and person-years in stratum j and D* = C d; 
represents the total standard deaths. The second expression is easier for computation. 
An interpretation of the CMF in this case is as the ratio of the number of deaths that 
would be expected in the cohort if it had the same age structure as the standard 
population, using the stratum-specific cohort rates to calculate the expectation, divided 
by the number of deaths in the standard population. This version of the CMF may also 
be recognized as a weighted average of age-specific cohort to standard rate ratios 
rj = xj/k;, 

c;=, ujq 
CMF = c;=, uj ' 

where now the weights uj  = nTv  = d; are equal to the number of deaths in each age 
group in the standard population. 

A major disadvantage of the CMF is its instability when the component rates are 
based on small numbers of deaths. This is easily illustrated by means of a hypothetical 
example. 

Example 2.6 
Table 2.9, adapted from Mosteller and Tukey (1977, p. 237), presents fictitious data involving three age 

strata. The CMF is determined from equation (2.4) as 

CMF = 
150 000(10/10 000) + 70 000(9/3000) + 210(1/1) 

460 
= 1.24. 

However, if the single cohort member in the 85+ age stratum were to survive instead of die, the same 
calculation gives 

CMF = 
150 000(10/10 000) + 70 000(9/3000) + 210(0/1) 

460 
= 0.78. 

Thus, a change in only one of the 46 deaths has made a large difference in the comparative analysis. 
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Table 2.9 Fictitious data used to illustrate the instability 
of the CMFa 

Age stratum Cohort Standard population 
(years) 

Deaths Person-years Deaths Person-years 
(dl ( n )  (dl (n)  

65-84 9 3 000 290 70 000 
85+ 1 1 30 21 0 
Totals 20 13001 460 220210 

a Adapted from Mosteller and Tukey (1977) 

( b )  Standard error of the CMF 

Instead of examining its sensitivity to individual deaths, a more systematic way of 
measuring the statistical precision of the CMF is to calculate its standard error (SE). 
We assume that the standard population is very large relative to the cohort, so that 
sampling errors in the standard rates may be ignored. Then, the standard error of the 
CMF is obtained directly from the standard error of its numerator. From equations 
(2.2) and (2.3) we have 

Corrections to this equation are needed if the standard population is constructed as a 
pool of several cohorts that includes the one for which the CMF is being determined 
(Yule, 1934). 

If the standard error is not regarded simply as a measure of statistical precision, but 
is to be used to construct test statistics or confidence intervals, it is preferable to make 
a transformation to the log scale. This helps to correct the skewness in the statistical 
distribution of the CMF itself and thus improves the normal approximation to the 
distribution of test statistics based on it. The standard error of the transformed CMF is 

2 2 112 SE(CMF) (C:=, w,d,ln,) 
SE(1og CMF) = - - 

CMF qd,ln, 

A test of the null hypothesis CMF = 1 could be effected by referring log CMFISE 
(log CMF) to tables of .the normal distribution, but, in practice, such tests are better 
carried out directly in terms of the age-specific rates, as described in the next chapter. 

Similar considerations apply to a comparison of the CMFs for two different cohorts, 
or equivalently to a comparison of the corresponding directly standardized rates. The 
standard error of the log ratio log (CMF2/CMFl) = log CMF, - log CMF, is given by 
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( c )  The standardized mortality ratio ( S M R )  

The standardized mortality ratio (SMR) has been in service at least since 1786 
(Keiding, 1987). It was used by W.H. Farr in the 1855 annual report of the Registrar 
General of Great Britain to compare mortality in different occupational groups 
(Benjamin, 1968). It is also defined as a weighted average of the age-specific rate ratios 
(equation 2.5), where the weights w j  = n,v are the expected number of deaths for the 
cohort in the jth age group, rather than the number of standard deaths as used for the 
CMF. Thus, the SMR compares the observed number of deaths in the cohort with an 
expected number obtained by applying the standard rates to the cohort age structure. 
In symbols, 

C;=, d, - D 
SMR = 

C;=, njhf E*' 

where D = C dj  denotes the total observed number of deaths and E * is the expected 
number. 

In typical applications, the SMR is used to compare mortality from each of several 
causes of death in the cohort as a whole to that in the general population. Table 2.16, 
for example, shows the SMRs for four causes of death for the Montana smelter 
workers. Diseases identified as occurring in excess may then be studied in greater detail 
in relation to specific exposures. Of course, there is no guarantee that this process will 
identify those diseases or causes of death that are most closely associated with the 
exposures. Cause-specific rates for unexposed cohort members may be less than those 
in the general population, whereas rates for exposed members are higher, and the two 
effects may cancel each other out when averaged over the entire cohort. Nevertheless, 
use of the SMR as a device for screening a number of different causes of death seems 
firmly established. Other techniques to detect cancer sites or causes of death that are 
related to exposure, but without reference to an external standard population, are 
considered in Chapter 3. 

One advantage of the SMR over the CMF is that age-specific numbers of deaths d, 
are not required for its calculation. It suffices to know only the total D. This sometimes 
permits application of the SMR to published data for which the CMF could not be 
used. Details on numbers of deaths by cause, subgroup and age are often omitted from 
official publications for reasons of economy, whereas the subtotals by cause and 
subgroup and the person-years by subgroup and age are given. However, caution is 
required in such circumstances, because if the detailed data are missing there is no way 
of evaluating the hypothesis of constant rate ratios that is needed to justify fully the use 
of these summary measures (see below and also $4.6). 

The SMR is also the preferred measure when analysing cross-sectional data 
according to birth cohort rather than calendar period. The reason is that the age 
intervals for which data are available differ for different generations, a feature that 
precludes calculation of comparable CMFs. Beral (1974) and Beral et al. (1978) have 
provided us with two particularly innovative examples that illustrate this type of 
application. 
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Example 2.7 
Figure 2.5 shows SMRs for ovarian cancers calculated for successive generations of women from 

age-specific mortality rates. Data were available for women aged 30-74 years for the period 1931 to 1973 in 
the USA and for the same ages between 1931 and 1975 in the UK. Age-specific rates for the pooled calendar 
periods were used as a standard, and the SMRs consequently tend to cluster about 100. When the SMRs are 
plotted against average completed family size for the same generations, there is a near perfect negative 
correlation that suggests a possible protective effect of pregiiancy or childbearing (Fig. 2.6). 

In a similar analysis, Figure 2.7 shows plots of SMRs for cervical cancer in England and Wales by 
generation together with the rates of gonorrheal disease that prevailed at age 20 in those same generations. 
The similarity in the shapes of the two curves is striking. 

Another advantage of the SMR, when viewed as a weighted average of the ratios of 
age-specific rates for cohort and standard population, is that the weights q = n i v  
minimize the variance of the weighted average. Assuming that the true rate ratios are 
constant, the SMR is thus the minimum variance estimate of the common rate ratio. In 
practical terms, this means that it tends to be less sensitive to numerical instabilities in 
one or two of the age-specific rates, a property that is easy to demonstrate by returning 
to an earlier example. 

Example 2.6 (contd) 
The expected numbers of deaths for the cohort in Table 2.9 is 

and thus the SMR is 20121.9 = 0.91, indicating a slightly lower death rate among the cohort members as 
opposed to the general population. If the single exposed person in the 85+ age group had died instead of 
lived, we would have SMR = 19121.90 = 0.87, a minor change compared to that observed earlier with the 
CMF. 

Another means of demonstrating the greater numerical stability of the SMR is to 

Fig. 2.5 Age-standardized mortality ratios for ovarian cancer in England and Wales 
(a) and the USA (0) for generations of women born at five-year intervals 
between 1861 and 1931. From Beral et al. (1978) 

r , l , l l , , , , , , , , l  

1861 1871 1881 lWl 1901 191 1 1921 1931 

Year of birth 
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Fig. 2.6 Age-standardized mortality ratios for ovarian cancer plotted against the 
average completed family size (number of children) for different generations 
of women in England and Wales (a) and the USA (0). The mid-year of 
birth of each generation is shown in parentheses. From Beral et al. (1978) 

Average number of children 

examine its standard error. Under the previous assumption that the numbers of deaths 
dj in the different (age) strata are uncorrelated, whereas sampling errors associated 
with the standard population are negligible, we calculate 

or, more appropriately 

- SE(1og SMR) = SE(SMR)/SMR = 1/D 'I2. (2-9) 

Since the standard error of the SMR depends only on fluctuations in the total number 
rather than in the age-specific numbers of deaths, it is generally smaller than that of the 
CMF. As already noted, under the hypothesis of constant age-specific rate ratios, the 
SMR weights the ratios optimally, in inverse proportion to their statistical precision, 
whereas with the CMF the weights associated with unstable ratios may be much larger. 
The SMR is thus more appropriate when the sample is small and questions of statistical 
significance are at issue; we examine methods of making statistical inferences about this 
measure in more detail than we did for the CMF. 
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Fig. 2.7 Standardized mortality ratios (SMR) from cervical cancer by birth cohort 
among women born between 1902 and 1947 in England and Wales and 
incidence of gonorrhoea among women in England and Wales, 1925-1972. 
From Beral (1974) 

Year of birlh 

- 
1922 1932 1942 1952 1962 1972 

Calendar year 

(d) Testing the signijicance of the observed SMR 

The first question of interest relating to the SMR is simply whether the observed 
cause-specific mortality in the study cohort can be explained adequately by the 
standard rates and the play of chance. Conventional approaches (Monson, 1980) use 
the simple continuity corrected chi-square statistic 

= ( ID - E* I - 1/2)2 
E* 

in order to test whether the observed number of deaths is significantly different from 
the number expected. This statistic is derived from the usual assumption that, under 
the null hypothesis, the observed number of deaths D is approximately Poisson 
distributed with mean and variance both equal to E* (Armitage, 1971, section 4.3). It 
is referred to tables of chi-square with one degree of freedom, or else its (signed) 
square root x is treated as an equivalent normal deviate. The 112 correction in the 
numerator is intended to improve the correspondence between the percentiles of the 
discrete Poisson distribution and the continuous normal one (see 94.3 of Volume 1). 

When the number of deaths is small, the Poisson distribution is rather skewed, and 
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the normal approximation implicit in the use of (2.10) will be inadequate. An 'exact' p 
value may be calculated using tail probabilities of the Poisson or (equivalently) 
chi-square distributions (Pearson & Hartley, 1966). However, these are tabled for only 
a limited range of values. Byar (see Rothman & Boice, 1979) suggested an extremely 
accurate approximation to the exact Poisson test, which is obtained by calculating the 
deviate 

where D = D if D exceeds E*, and D = D + 1 otherwise, and referring it to tables of 
the unit normal distribution (Rothman & Boice, 1979). Alternatively, and somewhat 
easier to remember, we may use the fact that the square-root transform is 'variance 
stabilizing' (Armitage, 1971), so that D ' ~  is approximately normal with mean (E*)'" 
and variance 114 under the null hypothesis. This means treating 

as a standard normal deviate. 

(e) Confidence intervals for the SMR 

A second statistical question of common interest is to determine a range of possible 
values for the true SMR that are reasonably consistent with the observed data. If the 
test of the null hypothesis gives the verdict 'not significant', it may be important to 
demonstrate that the study had sufficient precision to render large differences between 
cohort and standard rates implausible. Or, if the result is positive, one may wish to 
examine its consistency with that of other studies. Putting a confidence interval around 
the observed SMR can achieve these goals. 

Exact confidence limits for the SMR are obtained by first finding lower (L) and 
upper (U) limits pL and pu for the mean p = E(D) of the Poisson distributed 
observation D, and then calculating SMRL = pL/ E* and SMRu = pu /E  *. Exploiting 
the general relationship between confidence limits and -test statistics ($54.2 and 4.3 of 
Volume I),  the limits on p may be found by solution of equations involving Poisson 
probabilities. Table 2.10 presents exact 95% limits for a Poisson mean for selected 
values of D ranging from 1 to 1000 (Haenszel et al., 1962). 

For other confidence levels and values of D not shown in Table 2.10, Byar's 
approximation is sufficiently accurate that one may avoid the iterative calculations 
needed for the exact results. Thus, for a 100(1 -a)% confidence interval, we have the 
approximate limits (Rothman & Boice, 1979) 

and 

where Zd2 denotes the 100(1- a/2) percentile of the unit normal distribution. 
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Table 2.10 Tabulated values of 95% confidence limit factors for 
estimating a Poisson-distributed variablea 

Observed Lower Upper Observed Lower Upper Observed Lower Upper 
number limit limit number limit limit number limit limit 
on which factor factor on which factor factor on which factor factor 
estimate estimate estimate 
is based is based is based 
(n) (L) (U) (n) (L) (U) (n) (L) (U) 

a From Haenszel et a/. (1962) 

Somewhat less accurate but more easily remembered approximate limits for the 
SMR may be derived from analogues to the other statistics (2.10) and (2.12) used to 
test .the null hypothesis. Specifically, denoting by 8 the unknown value of the SMR, we 
solve the equation (D - ~ E ) ~ / B E  = Z:,, (ignoring the continuity correction) to find 

1 
SMRi= B L =  SMR 1 + - ~ $ ~ { 1 -  (1 + 4D/2:/J1"}] [ 2D 

and 

1 
SMRU = Bo = SMR 1 + - 2:,{1+ (1 + 4~/2:~~)'"}] [ 2D 

as the limits derived from the standard chi-square test. We have not used a continuity 
correction for this calculation, since to do so gives less accurate limits empirically. 
Alternatively, limits based on the square-root transform are obtained by solving the 
equation 2{D1I2 - ( 8 ~ ) " ~ )  = ZLl2, which gives 
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and 

The use of D + 1 in the second equation is made on strictly empirical grounds in order 
to improve the approximation for small D (compare equation (2.13)). 

The exact Poisson limits and all three sets of approximate confidence limits 
(2.13)-(2.15) can b e  expressed in the form SMRL = S M R  x ML and SMRu = S M R  x 
Mu, where ML and Mu are multipliers determined by a and D. Table 2.11 compares 
the multipliers obtained by each method for several values of D, a = 0.05 and a = 0.01 
(95% and 99% confidence). Byar's approximation is shown to be accurate even for 
quite small numbers of deaths. The square-root transform performs reasonably well as 
soon as D exceeds 10 or so. Especially as regards the lower bound, which is usually of 
prime interest, however, the approximation based on the simple chi-square statistic is 
not very satisfactory. 

Table 2.11 Exact and approximate multipliers for computing confidence inter- 
vals for the SMRa 

No. of Exact limits Byar's approximation Square root Chi-square 
deaths (equation 2.13) (equation 2.15) (equation 2.14) 
( D )  

Lower Upper Lower Upper Lower Upper Lower Upper 

95% intervals 
5.565 0.000 
3.61 1 0.094 
2.922 0.188 
2.561 0.260 
2.334 0.31 5 
1.839 0.476 
1.650 0.558 
1.545 0.61 0 
1.476 0.646 
1.31 8 0.742 
99% intervals 
7.471 0.000 
4.656 0.008 
3.671 0.066 
3.157 0.1 27 
2.836 0.1 80 
2.142 0.351 
1.879 0.445 
1.734 0.507 
1.641 0.551 
1.426 0.669 

a Note: In order to obtain lower and upper limits for an SMR based on the indicated number of deaths, 
the computed SMR is multiplied by the values shown. 
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Example 2.8 
Fifteen deaths from bladder cancer were recorded prior to 1964 among the Montana smelter workers, 

whereas only 8.33 were expected from US population rates: SMR = 1518.33 = 1.80. The 95% confidence 
limits found from the exact multipliers corresponding to D = 15 in Table 2.10 are SMR, = 0.560 x 1.80 = 
1.01 and SMR, = 1.649 X 1.80 = 2.97. Those based on Byar's formula are almost the same, and those for the 
square-root transform only very slightly wider (1.00, 2.98). However, the limits based on the chi-square test 
statistic (1.11, 2.97) have a lower limit which is seriously in error, as do those based on the standard error of 
log(SMR), namely 1.80 x exp ( f 1 . 9 6 / m )  = (1.09, 2.99). 

Since the exact lower limit just excludes 1.0, we know that the exact two-sided significance level must be 
just under 0.05. Equation (2.11) gives 2 = 1.98 (p = 0.048), whereas with (2.12) we find = 1.97 (p = 0.049). 
The conventional formula (2.10) yields 2 =2.14 (p =0.033) with continuity correction and x =2.31 
(p = 0.021) without. This reinforces our conclusion that the test statistics (2.11) and (2.12) should be used in 
preference to (2.10). 

( f )  SMR versus CMF: a tradeoff between bias and variance 

Up until now we have emphasized the statistical advantages of the SMR over the 
CMF, but, unfortunately, this is not the entire story. The major weakness of the SMR 
is that ratios of SMRs for two comparison groups may not adequately represent the 
ensemble of ratios of their component age- or stratum-specific rates (Yule, 1934). In 
fact, as the schema shown in Table 2.12 makes clear, there is a precise analogy with the 
arithmetic of statistical confounding. 

The ratios of SMRs for Cohort 1 versus Cohort 2 within each age group equal the 
odds ratio calculated from the corresponding 2 x 2 table, and likewise the overall SMR 
ratio is the odds ratio from the totals table. According to the general principle of 
statistical confounding (83.4 of Volume I) ,  it follows that, even if the two age-specific 
odds ratios are equal, they may differ from the pooled odds ratio if both (i) the SMRs 
for each cohort vary from one age group to another and (ii) the age distributions of the 
two cohorts, and hence the distributions of expected numbers of deaths, are disparate. 
Since the age-specific ratios of SMRs equal the ratios of the corresponding rates 
(assuming that the standard rates are used in calculation of the expected numbers), it 
follows that the ratio of two SMRs determined by pooling observed and expected 
deaths across age groups may sometimes lie completely outside the range of the 
age-specific rate ratios. 

The fictitious data in Table 2.13 provide a clear numerical illustration of this 
phenomenon. The overall SMR for each cohort is a weighted average of the two 

Table 2.12 Confounding remaining after indirect standardization 

Age group 1 Age group 2 Total 
- - 

Observed Expected Observed Expected Observed Expected 

Cohort 1 dl, e 7 dl 2 e?2 01 E 7 
Cohort 2 4, e l  d22 e,+, 4 E; 
SMR, dl 1 e,", d12eZ2 

-- 

SMR2 4 1  ~ T I  d22e7z 4 E 7  

d and D = number of deaths observed 
e* and E X  = number of deaths expected 
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Table 2.13 Example of a misleading ratio of SMRsa 

Cohort Age range (years) 

20-44 45-64 Total (20-64) 

d 100 1600 1700 
I e* 200 800 1000 

SNIR, (%) 50 200 170 

d 80 180 260 
II e* 120 60 180 

SMR, (%) 67 300 144 

SMR,/SMR, 75 67 118 

a Adapted from Kilpatrick (1963) 
d = number of deaths observed 
e* = number of deaths expected 

age-specific dle* ratios, the weights being proportional to the expected number of 
deaths. Since Cohort 1 has more older people, the high dle* ratio for the 45-64-year 
age interval is weighted more heavily, whereas in Cohort 2 much more emphasis is 
given to the lower dle* ratio in the 25-44-year age interval. The overall result is a 
change of sign in the apparent effect, from an excess of deaths in Cohort 2 on an 
age-specific basis to an apparent excess in Cohort 1 when the data are pooled. 

The CMF does not suffer from this problem. Ratios of two CMFs, being ratios of 
directly standardized rates, can be expressed as a weighted average of the age-specific 
rate ratios. If these are all equal to some constant value 8, therefore, the ratio of 
CMFs must also equal 8 .  However, this equality does not hold for the SMRs, unless, 
in addition, the age-specific rates for each comparison group are also in constant 
proportion with those for the standard population. This bias in the SMR has led many 
authors to conclude that the CMF is the preferred measure. Miettinen (1972) says of 
the SMR that 'estimates computed in this manner are internally standardized but not 
mutually comparable'. Kilpatrick (1963) notes that 'the ratio of two CMFs is a CMF 
but the ratio of two SMRs is not an SMR'. 

In spite of these criticisms, the SMR and the CMF usually provide numerical results 
that are remarkably close in practice. In cases in which they differ, moreover, it is not 
necessarily true that the CMF is more nearly 'correct'. Table 2.14, compiled by the 
Office of Population Censuses and Surveys (1978), examines occupations of British 
men for which the CMF and SMR differ by 5 or more when each was expressed as a 
percentage. The large discrepancy between the two measures for trainee craftsmen in 
engineering trades is caused by undue weight in the CMF to the lack of deaths among 
men over 25 years of age, even though these men accounted for only 1% of the 
population. Since only one death in the 55-64-year age group would have increased the 
CMF from 1 to 35, this is another example of its extreme sensitivity to small numbers 
and serves as a reminder that we need to consider variance as well as bias in our choice 
of a summary statistic (see also Example 2.6). 

The CMF may itself overemphasize biases in the basic data. As noted by the Office 
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Table 2.14 Occupation units for which the CMF and SMR differa 

Occupation unit SMR CMF Age group (years) 
( % I  (%) 

No. Title 15-24 25-34 35-44 45-54 55-64 

Major differences (10 or more) 
009 Workers below ground 

032 Trainee craftsmen 
(engineering trades) 

117 Pilots, navigators and 
flight engineers 

151 Fire brigade officers 
and men 

152 Police officers and men 

187 Chiropodists 

302 Metallurgists 

221 Armed forces (UK) 

222 Armed forces (foreign) 

Minor differences (5-9) 
61 Shoemakers and 

repairers 
114 Other labourers 

134 Lorry drivers' mates 
van guards 

158 Domestic 
housekeepers 

163 Kitchen hands 

164 Maids, valets and 
related workers 

204 Chemists 

All men 

Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 

Mortality ratio 
% Population 
Mortality ratio 
% Popoulation 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
Population 
(15 - 64= 100) 

a From Office of Population Censuses & Surveys (1978) 

of Population Censuses and Surveys for the data in Table 2.14: 

'Pilots, policemen, firemen and members of the armed forces all recorded differences 
between the SMR and CMF of greater than 10. Although men in these units generally 
retired before 55 years of age and took up other work their main occupations instead of 
their last occupations were often recorded when the deaths were registered. The 
age-specific mortality ratio in the 55-64 age group was consequently inflated by this 
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bias. The CMF placed considerable weight on the death rates in this age group since 
over 60 percent of the standard deaths occurred at this age. Since however for each of 
these occupation units the population in this age group was small, the SMR placed less 
weight on these high death rates, compensating for the bias introduced.' 

Silcock (1959) determined analytically three conditions under which the CMF and 
SMR give substantially different results. Denote by pj = n j / N  and p7 = n;/N* the age 
distributions of the comparison group and the standard population, both expressed as 
proportions, and by f i j  and A; the corresponding rates. Then the conditions are: (i) the 
differences p i - p l  must be non-negligible; (ii) the ratios r, = L , / A ;  must vary 
substantially with age 0'); and (iii) the differences in (i) and the ratios in (ii) must be 
correlated, such that positive differences tend to occur with high ratios and negative 
differences with low ratios, or vice versa. The 'data7 in Table 2.13 confirm that these 
conditions hold in situations where the CNIF and SMR differ. 

( g )  Summary ratios under heterogeneity of effecl 

Much of the preceding discussion of the relative merits of the CMF and SMR was 
conducted under the (sometimes only implicit) hypothesis that each measure was 
estimating the same quantity, namely the ratio of age-specific rates assumed constant 
from one age group to the next. The major exception was the fact just cited that the 
two measures could yield substantially different results only if the age-specific ratios 
varied in tandem with differences in the age distribution. Our basic viewpoint remains 
that summary measures should be avoided whenever there is substantial heterogeneity 
in the age-specific quantities being summarized. 

Other authors have been more concerned with the issue of how to choose a summary 
measure in order to arrive at a scientifically meaningful result, even in the face of 
heterogeneity. Greenland (1982) notes that the CMF, viewed as a weighted average of 
ratios with weights equal to standard deaths (equation 2.5), represents the proportion- 
ate increase (or decrease) in the total disease rate that would be expected to occur in 
the standard population if its members had the same exposures as those in the cohort. 
Similarly, the SMR represents the proportionate increase in the cohort disease rate due 
to the exposures that occurred as a result of cohort membership. Following Miettinen 
(1976), he proposes yet another summary measure that uses the age distribution of the 
combined (cohort plus standard) population for calculation of the weights used to 
mutliply the age-specific ratios, namely: uj = (nj + n,*)jli*. 

Several other proposals are reviewed by Kilpatrick (1963) and Fleiss (1973). The 
relative mortality index (RMI) weights the ratios r;- = f i j / A 7  by the age distribution of 
the cohort: 

C;=,.njAjlA7 ;*;=,dj/A7 
RMI = - - 

J 
C;;l nj Cj=lnj  * 

Liddell (1960) examines some properties of this measure, which he credits to Kerridge 
(1958) and Doering and Forbes (1939). Yerushalmy (1951) and Elveback (1966) use 
the length of the age interval to weight these same ratios, while Haenszel (1950) 
considers a ratio of directly standardized rates with weights equal to the number of 
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years of working life (up to age 65) lost. Of course, if the ratios are constant, none of 
these schemes is optimal in the sense of minimum variance, as was true of the SMR, 
nor has any of them come into common use. 

2.4 Proportional measures of incidence and mortality 

Proportional mortality studies were mentioned in 01.6 as a timely and cost-effective 
way to provide a rough measure of the effect of cohort membership or of specific 
exposures on mortality caused by particular diseases. If the only data available concern 
incident cancer cases, information about their distribution by topographic site or 
histology can alert one to the possibility of unusual patterns of incidence that should be 
investigated using more orthodox methodologies. It is especially important in such 
studies to try to ascertain all deaths or cases that occur in a defined population during a 
defined period, or else to ensure that the probabilities of ascertainment do not depend 
on the cause of death or type of cancer. Otherwise one runs the risk of making 
misleading inferences due to selection bias. Even if such precautions are taken, major 
problems of interpretation remain due to the logical impossibility of making compara- 
tive statements about rates from 'numerator' data only 

In this section we present the usual epidemiological methods for adjusting numerator 
or proportional mortality data so as to account for the differences in age distribution 
between the study group and the standard population. The same techniques may be 
used to control the effects of calendar year and other potentially confounding variables. 
We also show some empirical comparisons of the different results obtained from SMR 
and proportional mortality analyses when both are applied to the same set of data. A 
more theoretical evaluation of the behaviour of the proportional mortality measures is 
presented in 04.7, together with some suggestions for statistical modelling of this type 
of data. 

(a) The proportional mortality ratio (PMR) 

The basic idea of proportional mortality analysis is to compare the fraction of cohort 
deaths due to a specified cause with the corresponding fraction for the general 
population. Denote by dj the number of deaths from the cause of interest observed in 
age interval j in the study group, and by d; the corresponding number of standard 
deaths. Likewise denote by tj and t,? the total numbers of age-specific deaths, regardless 
of cause. Then, with D = C dj, D* = C d,?, T = C ti and T* = C t,? indicating the totals 
of these quantities summed across age strata, the ratio (DIT) t (D*IT*) of the two 
proportions provides a crude measure of relative effect. Note that this can also be 
expressed as the ratio of the observed number of cause-specific deaths, D, to the 
number expected by applying the standard proportion to the total deaths, namely 
T x (D*IT*). 

Since the death rates, and thus the proportions of deaths for different causes, depend 
on age in different ways, the age distribution of the comparison group can influence the 
overall proportion DIT. The conventional approach to adjusting for such age 
differences (Monson, 1980) is to calculate the expected numbers on an age-specific 
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basis and then sum up. This yields a measure known as the proportional mortality ratio 
(PMR) , namely: 

PMR = 
D 

C;=, t,(d;/t;) ' 

Under the null hypothesis that the age-specific proportions agree between cohort and 
standard population, the PMR will be approximately unity in large samples of data, 
regardless of differences in the age distributions. However, unless the disease is rare, 
the PMR does not estimate any well-defined or appropriate parameter under 
alternative hypotheses of interest ($4.7). For this reason, we do not recommend that 
statistical inference procedures be conducted on the PMR, but suggest instead that one 
use the parameter estimates, tests and confidence limits produced as a by-product of 
the model fitting described later. Nevertheless, we record here an equation for the 
standard error of log(PMR) that is based on the notion that the denominator is fixed 
whereas the numerator D is a sum of independent binomial variables: 

(CJ d.(t.-d,)/t,)ln 
SE(1og PMR) = '=' ' ' 

D 

The simpler equation (2.9) can be viewed as a conservative approximation to (2.17), to 
be used with the PMR as well as the SMR provided that the fraction of deaths due to 
the cause of interest is quite small. 

( 6 )  The PMR and the relative SMR 

Several investigators have noted that, in practice, the PMR for a given cause of 
death is approximately equal to the SMR for that cause divided by the SMR for all 
causes combined. When there is no stratification by age or other factors one has: 

PMR = 
D I T  - DIN TIN 

- - - - SMR 
D*lT* D*lN* ' T*IN* SMR(al1)' 

where SMR(al1) denotes the all-causes ratio (Decoufle et al., 1980). This equality does 
not hold, however, for the usual age-standardized PMRs and SMRs. Kupper et al. 
(1978), who refer to the ratio of cause-specific to all-causes SMR as the 'relative 
standardized mortality ratio' (RSMR), have attempted to establish confidence bounds 
within which the ratio of the two sides of the equation would be expected to lie with 
high probability. Unfortunately, their method relies on an assumption that cannot be 
verified from numerator data alone, namely that the age distribution of the deaths that 
would be expected to occur in the comparison group by applying the standard rates is 
roughly the same as the age distribution of the standard deaths. If this condition does 
not hold, the magnitude of the difference between the two sides of the equation could 
be larger than their calculations would suggest. Nevertheless, it is a frequent empirical 
finding that the PMR and RSMR tend to agree, probably because the age distributions 
in question are rarely all that different. 

Table 2.15, adapted from Decouflk et al. (1980), illustrates the typical agreement 
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Table 2.15 Cause-specific mortality experience of non-white male foundry workers 
employed at a plant between 1938 and 1967" 

Cause (ICD, 7th revision) No. of observed SMR (%I  PMR (%) RSMR (%) 
deaths 

All causes 172 55 100 100 
Cancer (140-205) 35 88 153 1 60 

Digestive (1 50-1 59) 14 92 161 167 
Respiratory (1 60-1 65) 12 114 199 207 
All other 9 65 11 1 118 

Stroke (331,332) 9 36 62 65 
Circulatory disease (400-468) 54 53 93 96 
Accidents, suicide, homicide 27 52 107 95 
All other causes 47 48 92 87 

a Adapted from Decouflb et a/. (1980) 
SMR =standardized mortality ratio 
PMR = proportional mortality ratio 
RSMR = relative standardized mortality ratio 

found between PMRs and RSMRs for the same cause. In their example, the overall 
mortality of the workers was so low in comparison with that of the general population 
that there appeared to be a marked excess of respiratory cancers when numerator data 
alone were considered. If one believed that the selection bias that operates to make 
industrial workers healthier than the general population applied with equal force to all 
diseases, then it would be reasonable to conclude that the elevated PMR observed for 
respiratory cancer was indicative of an effect of exposure on that disease. However, a 
more plausible explanation in this case is that the elevated PMR results from the 
selection bias being less pronounced for cancer than it is for other diseases (Enterline, 
1975). In view of the uncertainty surrounding these assumptions, use of the RSNIR and 
PMR remains controversial (Wen et al., 1983). 

Our last example illustrates a number of the basic calculations introduced throughout 
the chapter using data from the Montana cohort. 

Example 2.9 
Table 2.16 presents the CMFs, SMRs, PMRs and RSMRs for four causes of death for the 8014 workers in 

the Montana cohort. The 1950 US standard population (Table 2.5) provided the weights used for direct 
standardization and calculation of the CMF. Expected numbers needed for determination of the SMRs were 
obtained by multiplying the exact person-years shown in each cell of Table 2.2 by the corresponding rates for 
US white males (Appendix 111) and then summing. The denominators of the CMF statistics were obtained by 
applying the standard weights, a function of age alone, to the standard rates, which varied by both age and 
year. Thus, we have used equation (2.3) to calculate the CMF, rather than the simpler equation (2.4), which 
applies only when the weights are proportional to the denominators of the standard rates. The PMR was 
determined from equation (2.16); and the standard errors for the logarithms of the CMF, SMR and PMR 
(which equal the standard errors of the estimate expressed as a percentage of the estimate) were determined 
from equations (2.7), (2.9) and (2.17), respectively. 

This working cohort was unusual in having an all-causes summary rate ratio (CMF or SMR) substantially 
above 100%. The PMRs and RMSRs show good agreement, as do the CMFs and SMRs. Note that the 
standard errors of log(PMR) are less than those for log(SMR). Part of the difference is due to the inherently 
smaller degree of variability in a proportion than in a rate. For example, had we used equation (2.9) to find 
the standard error of log(PMR) for circulatory diseases, the result would have been SE(1og PMR) = 2.6% 
rather than 1.9%. Similarly, the log(SMRs) have smaller standard errors than do the log (CMFs). Besides 
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Table 2.16 Mortality ratios for the Montana cohort 

Cause of death 

All causes All cancers Respiratory Circulatory 
cancer disease 

No. of observed deaths 3404 62 1 288 1535 
No. of expected deaths 2761.0 485.4 137.1 1473.4 
CMF(x100) f SE(%)= 111.4f 2.5% 127.8f 5.0% 234.6f 7.0% 93.1 f 3.1% 
SMR(x 100) f SE(%Ia 123.3f 1.7% 127.9.f 4.0% 210.1 f 5.9% 104.2 f 2.6% 
PMR(%) f SE 100 102.9 f 3.6% 166.4 f 5.5% 84.5 f 1.9% 
RSMR(%) 100 103.7 170.4 84.5 

aStandard errors are computed on a log scale, e.g., SE(logCMF) =0.025, and we thus express the standard 
deviations of the estimate as a percentage of the estimated value 

CMF = comparative mortality figure 
SMR = standardized mortality ratio 
PMR = proportional mortality ratio 
RSMR = relative standardized mortality ratio 

the excesses of respiratory cancer and circulatory disease (mostly diseases of the heart) shown in Table 2.15, 
there were more deaths observed from tuberculosis, cirrhosis of the liver and emphysema than would have 
been expected from the standard rates (Lee-Feldstein, 1983). 
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CHAPTER 3 

COMPARISONS AMONG EXPOSURE GROUPS 

The techniques of standardization introduced in the last chapter are typically used to 
determine whether the cause-specific mortality rates for the study cohort are 
comparable with those from some appropriate standard population. The observation of 
an elevated CMF or SMR for a particular cause of death may alert the investigator to 
the possibility that the cohort members are subject to exposures which increase their 
risk for that disease. However, a single elevated mortality ratio is usually not regarded 
in itself as sufficient evidence for. a causal relationship, unless it is extremely large. A 
much better indication of causality is the demonstration of a trend in the mortality 
ratios with degree or duration of exposure. 

In this chapter, we explore several elementary methods used by epidemiologists and 
biostatisticians to examine cohort data for evidence of differences in death rates 
between subgroups defined by exposures or other factors, and in particular for 
evidence of dose-response relationships. The most appropriate methods are adapta- 
tions of the classical Mantel-Haenszel analyses of grouped case-control data presented 
in Chapter 4 of Volume 1. These are covered in $3.6 below. Earlier sections consider 
methods based on the standardization -techniques developed in the last chapter. These 
are of interest largely for historical reasons. Both the limitations and the potential of 
the various techniques are illustrated by their systematic application to the Montana 
smelter workers study. In addition, we cite several examples from the literature which 
point up notable innovations or pitfalls in the use of these statistical tools. 

3.1 Allocation of person-years to time-dependent exposure categories 

The first step in comparing death rates among different subgroups of the cohort is 
simply to estimate the rates for each of them separately using the techniques outlined 
in the previous chapter. This is quite straightforward when the subgroups are formed 
on the basis of information available at entry into the study - for example, when .they 
are defined by age or calendar period at entry or by a classification of the initial work 
area according to measured levels of exposure. One simply treats each subgroup as a 
separate cohort and carries out the usual allocation of deaths and calculation of 
person-years by age and time for each one independently. Since a study member 
contributes person-years observation to only one subgroup, there is no ambiguity about 
the assignment of his observation time. 
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It is also of interest, however, to make comparisons among subgroups defined on the 
basis of variables that change values as the subject moves through the study. For 
example, subjects often continue to accumulate exposures of interest during the same 
period that they are being followed for evaluation of cause-specific mortality. Industrial 
workers may be entered on study while still relatively young and be followed through 
their working years and on into retirement. If the measured exposures are distributed 
continuously over the working lifetime, the subjects with the highest cumulative levels 
of exposure are frequently those who have lived the longest. This is even truer when a 
variable that reflects duration of exposure is being analysed for its relationship to 
the risk of disease. Special precautions are required to ensure that the allocation of 
person-years is made appropriately. 

Several investigators have attempted to establish a dose-response trend in such 
circumstances by classifying each subject into a single subgroup on the basis of his total 
cumulative exposure or duration of employment at the end of the study. Mortality 
ratios computed separately for each subgroup are then compared. Unfortunately, 
results obtained in this manner are fallacious, since the early person-years of follow-up, 
when cumulative exposures are light, are being allocated to the same heavy exposure 
category as the later person-years. The death rates calculated in this fashion for the 
highest exposure categories are too low, since person-years during which no death 
could have occurred are included in the denominator. Rates for the lowest exposure 
categories are too high since it is only the individuals who die with short exposures who 
contribute to the denominator; the person-years of someone who might have died with 
short-term exposure, but in fact did not, are allocated elsewhere. 

The correct assignment of each increment in person-years of follow-up is to that 
same exposure category to which a death would be assigned should it occur at that 
time. Subjects who change their exposure classification as they move through the 
study, as many in fact do, thus contribute to the person-years denominators of the rates 
for several exposure categories. Figure 3.1 illustrates schematically the proper, 
dynamic method of allocation as well as the improper, fixed method when duration of 
follow-up itself is used to define the subgroups being compared. 

Table 3.1 presents an example of the magnitude of this dose-response fallacy in 
actual practice. In the original report of an early study of vinyl chloride workers (Duck 
et al., 1975), the authors observed that the all-causes SMR declined from 110 for those 
employed for less than 15 years to 61 for those employed for 15 or more years and 
stated that no significant excess of mortality had occurred. However, the apparent 
decline in the SMRs was due entirely to the use of an improper methodology. After 
correcting the fixed person-years allocation used in the original analysis to an 
appropriate, dynamic one, the statistically significant negative trend in the SMRs 
disappeared. There was even an indication of a positive trend in the SMR for digestive 
cancer with duration of exposure (Duck & Carter, 1976; Wagoner et al., 1976). 
Enterline (1976) discusses a similar error in the report of Mancuso and El-Attar (1967), 
who failed to detect a trend in respiratory cancer SMRs among asbestos workers who 
had been employed for increasing lengths of time. 

We describe two algorithms for the correct assignment of person-years observation 
in the presence of time-dependent exposures categories, the use of which enables one 
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Fig. 3.1 Schematic diagram illustrating proper and improper methods of allocation of 
person-years. x , death from cause of interest; 0, withdrawal 

Duration of follow-up [years] 

Cases observed 
- ~p 

42 28 9 
Person-years: correct allocation 

2 28 49 
Person-years; incorrect allocatio~i 

Table 3.1 Reanalysis of data by Duck et a / .  showing original versus 
revised numbers of expected deaths and SMRs by duration of exposure 
and cause of deatha 

- 

Cause Duration No. of observed No. of expected SMR 
of death of exposure deaths deaths 

(years) 
Original Revised Original Revised 

All causes 0-14 111 100.92 118.97 110 94 
15+ 25 41.30 24.15 61 104 

Total 0-14 27 25.55 29.93 106 90 
cancers 15+ 8 10.89 6.51 73 123 

Digestive 0-14 7 7.77 9.10 90 77 
system 15+ 4 3.31 1.98 121 202 
cancers 

Lung 0-14 13 10.73 12.57 121 103 
cancer 15+ 3 4.80 2.96 62 101 

a From Duck et a/.  (1975); Duck & Carter (1976) 
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to avoid the dose-response fallacy caused by the overlapping of exposure and follow-up 
periods. 

(a) Algorithms for exact allocation of person-years 

In practice, there may be several time-dependent exposure variables of interest, and 
a simultaneous classification of deaths and person-years in a multidimensional table is 
required. For example, in addition to duration of time since start of employment, we 
usually need to keep track of age and calendar year, if only for purposes of 
standardization. Time since cessation of exposure adds a fourth dimension. Deter- 
mination of the exact length of observation time that each individual contributes to 
each cell in the four-way table may seem initially to present a difficult problem. 

Clayton (1982) describes a computing algorithm for making the appropriate 
allocation of person-years in such circumstances. It requires that one have available 
exact dates of entry into and exit from the various time-dependent classes. While not 
the most efficient method for all problems, this procedure has the advantage of 
simplicity and generality. Suppose, for example, that one wishes to determine the 
person-years observation time contributed by one subject to the cell defined by the age 
range 40-49, the calendar period from 1950-1954, and the interval from five to ten 
years since first exposure to some risk factor. Then Clayton's procedure is as follows: 

(A) Choose the latest of the three dates: date of birth +40 years, 31 December 1949, 
and date of first exposure +five years. 

(B) Choose the earliest of the four dates: date of birth +50 years, 31 December 
1954, date of first exposure +ten years, and date of exit from study. 

(C) If B precedes A, then the individual makes no contribution to this cell. 
Otherwise, the observation time contributed is the time interval from date A to date B. 

The calculation must be repeated for each individual for each such cell in the 
multidimensional table (three dimensions in this example). It accommodates time- 
dependent variables defined in terms of cumulative length of exposure to particular 
agents, provided that one knows the exact dates at which cell boundaries are crossed. 
For example, one could add to the above specifications the requirement that the 
individual has received a cumulative exposure of between 5 and 10 units of radiation 
while employed in a nuclear industry. If periodic readings of radiation exposure were 
made, so that the dates of crossing the 5 and 10 unit boundaries could be estimated, 
these two dates would be added to those in parts (A) and (B) above. 

An alternative, more efficient algorithm (Clayton, personal communication) is 
available when all of the axes of the multidimensional classification represent time 
variables that advance in pace with one another (age, calendar year, duration of time 
from initial exposure) rather than variables such as cumulative exposure or duration of 
(intermittent) employment, which advance at varying rates depending upon the entire 
history. This algorithm is presented in Appendix IV. 

When using one of the standard programmes for cohort analysis it may be feasible to 
obtain the number of deaths and person-years in each age-time-exposure category by 
making separate passes through the data for each exposure category. One defines the 
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dates of entry into and exit from the 'study7 for each individual to correspond to the 
dates of entry into and exit from the particular exposure category. However, this 
approach is too cumbersome and inefficient to be practical when the number of 
separate exposure categories is very large. 

( 6 )  Approximate methods of allocating person-years 

A drawback to Clayton's algorithms is that they require the exact dates at which an 
individual crosses from each time-dependent cell into another. In practice, exact dates 
maybe available for some of the relevant variables but not others. For example, we 
may know a worker's birthdate and date of termination, but have available only the 
(integral) age and calendar year at which he entered the study or moved between jobs. 
Nevertheless, it may be possible in such cases to assign approximate dates to the 
relevant events so that a consistent ordering is maintained between the dates of entry, 
first exposure, termination and so on, and Clayton's method may then be used. It is 
important that the same procedure be applied also to the classification of deaths, so 
that one does not have person-years accumulating in cells where no deaths are 
possible, or vice versa. 

An alternative approach to the problem of missing days and months in date variables 
is to use an approximate method of person-years allocation based on integral ages and 
calendar years. One such method was outlined in 82.1. For some of the examples in 
this monograph we have employed yet another approximation which divides each 
subject's observation period into annual intervals that are allocated in their entirety to 
a given time/exposure cell. Specifically, at the midpoint of each calendar year of 
follow-up, a determination is made as to the cell in which the subject should be 
classified at that moment. All of the observation time for that year, which may be less 
than a full year in case of entry into or exit from the study, is allocated to the one cell. 

3.2 Grouped data from the Montana smelter workers study 

One of the major themes of this monograph is the statistical analysis of grouped 
cohort data consisting of cause-specific deaths and person-years denominators classified 
by age, calendar period and relevant exposure variables, some of which may be 
time-dependent. In order to illustrate and compare the various analytical approaches, 
and to provide the reader with material that he can use to test his comprehension of 
the methodology, it is helpful to have available a data set that is reasonably typical of 
what one encounters in practice. Of course, one needs to balance the realism of the 
example against the need for simplicity if it is to be used as a pedagogic device. 

For this purpose we used the approximate method of person-years allocation just 
mentioned to summarize the data from the Montana study into a three-way table with 
the dimensions age, calendar period and arsenic exposure. Cumulative exposure was 
measured in terms of the duration of time spent in certain areas of the smelter where 
airborne arsenic levels were thought to be higher than average. It thus represents a 
relatively crude way of separating workers (or, more precisely, their person-years of 
observation) according to the presumed degree of hazard. The largely descriptive 
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analyses consist of estimating separate summary mortality measures for each exposure 
category and testing the statistical significance of the differences, especially for 
evidence of a trend with increasing exposure. Other, more refined approaches to 
dose-time-response analyses are discussed in Chapter 6. 

The epidemiologists who conducted this study classified the 30 work areas within the 
plant into three levels of arsenic exposure (see Appendix IE). 'High' arsenic exposure 
areas comprised the arsenic kitchen, arsenic roaster and cottrell, whereas those with 
'moderate' exposure levels were the convertor, reverbatory furnace, ore roaster and 
acid plant. All other areas were regarded as giving only 'light' exposures (Lee & 
Fraumeni, 1969). From the original data file containing the dates of entry into and exit 
from each work area for each worker, summary data consisting of the number of years 
worked in both high and moderate exposure areas were recorded by five-year calendar 
periods starting in 1910. By assuming that the exposure intensity was constant during 
each such period, we were able to determine the appropriate exposure duration 
category into which each individual should be classified at each point in time: (i) under 
1.0 years moderate or high arsenic exposure; (ii) 1.0-4.9 years; (iii) 5.0-14.9 years; 
and (iv) 15 or more years. 

The assignment of an exposure category to each calendar year was based on the 
duration of heavylmedium exposure experienced at a point two years earlier. Such 
adjustments to cumulative exposure variables are a crude way of coping with the bias 
that can arise from the fact that workers who have just entered a new cumulative 
exposure category are necessarily still employed and thus at lower risk of death, 
whereas those who change employment or retire for health reasons may have higher 
death rates (Gilbert, 1983). See the discussion in $ 1 . 5 ~  of the selection biases, known 
collectively as the 'healthy worker effect', that are caused by the fact that health status 
has a major influence on hiring, job changes and termination. This adjustment would 
be less necessary if it were possible to use onset of disease as the endpoint, rather than 
death from disease, since onset presumably occurs closer to the time of any adverse 
health effect. 

For the descriptive analyses reported in this chapter, the cohort was divided into two 
subcohorts, one consisting of the 1482 men employed prior to 1925 and the other of the 
remainder. The reason for this division was the fact that the selective flotation process 
introduced in 1924 apparently resulted in greatly reduced arsenic exposures (Lee- 
Feldstein, 1983). Substantially different dose-response trends are evident in the two 
groups. An alternative and possibly more appropriate means of coping with the change 
would be to classify the exposures as to the period during which they were actually 
received, namely before or after 1 January 1925. A man hired prior to 1925 could 
contribute to both sets of exposure duration variables, while someone employed later 
would contribute only to the post-1925 categories. However, this refinement is too 
complex for illustrative purposes. 

We used four ten-year age groups of 40-49, 50-59, 60-69 and 70-79 years and four 
calendar periods, 1938-1949, 1950-1959, 1960-1969 and 1970-1977, in order to keep 
the data file to a reasonable size. In actual practice, five-year intervals of age by 
calendar year (quinquinquennia) would be considered more appropriate in order to 
take full account of their potentially confounding effects. In order to be able to 
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Table 3.2 Standard respiratory cancer death rates and 
standard weights used for comparative analyses of the 
Montana smelter workers data 

Age range No. of deaths per 1000 person-years Standard 
(years) Calendar period weight 

(%) 
1938-1949 1950-1959 1960-1969 1970-1977 

40-49 0.14817 0.21 896 0.28674 0.37391 37.4 
50-59 0.4741 2 0.80277 1.05824 1.25469 30.1 
60-69 0.731 36 1.55946 2.33029 2.90461 21.5 
70-79 0.73207 1.63585 2.85724 4.22945 1 1 .O 

calculate and compare SMRs for the various exposure classes, standard respiratory 
cancer death rates were determined for each of the 16 agelcalendar cells by taking a 
weighted average of the death rates for the corresponding quinquinquennia (Appendix 
111), using weights proportional to the observed person-years. For calculation of 
directly standardized rates by exposure class, we chose weights to be proportional to 
the age distribution of the 1950 US population (Table 2.5). These weights thus depend 
only on age and not on calendar year. The standard rates and weights are both shown 
in Table 3.2. 

Table 3.3 presents summary data on the numbers of respiratory cancer deaths and 
person-years allocated to each exposure category by this method, as well as the results 
of certain analyses described below. Deaths and person-years that occurred outside the 
age range 40-79 years are ignored. The entire set of data records, consisting of 
observed respiratory cancer deaths and person-years denominators for each combina- 
tion of age, period and exposure, as well as other data, is listed in Appendix V. Note 
that age-year-exposure categories with no person-years of observation are omitted. The 
omissions are due largely to the fact that persons hired before 1925 could not 
contribute observations to the younger age groups during the later calendar intervals. 

A major weakness of the Lee and Fraumeni study, which also affects all the analyses 
of the Montana data reported in this monograph, is the lack of smoking histories for 
the 8014 smelter workers. Welsh et al. (1982) subsequently ascertained smoking 
information by mail questionnaire or telephone interviews from a random sample of 
1800 men, using proxy respondents for men who had died. They reported that the 
percentage of smokers was higher than for the USA as a whole, and this could well 
explain the high rates of respiratory cancer and ischaemic heart disease even in the 
'low' exposure category. There was little difference in smoking habits among men in 
the arsenic categories, however, so that the dose-response relationships are unlikely to 
be confounded by smoking. However, the positive effects of certain other variables on 
respiratory cancer, notably foreign birthplace, could well be secondary to the effects of 
smoking. Unfortunately, the smoking data were not available and could not be 
considered in the illustrative analyses. 
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Table 3.3 Dose-response analysis of respiratory cancer deaths among Mon- 
tana smelter workers, based on external standardization 

Cumulative years of moderatelheavy arsenic exposure 
(lagged two years) 

0-0.9 1 .O-4.9 5.0-14.9 15+ Total 

Workers employed prior to 1925 
No. of observed deaths 5 1 17 13 
Person-years ( x  1000) 19.017 2.683 2.600 
Crude rate 2.681 6.337 5.000 

(per 1000 person-years) 
Standardized rate 2.641 7.433 5.832 

(per 1000 person-years) 
Standard population ratea 1.185 1.185 1.185 

(per 1000 person-years) 
Expected deaths (E;) 21.47 2.95 2.76 

(standard population) 
CMF (%) 222.8 627.0 492.0 
SMR (%) 237.5 577.1 471.7 
Relative risk 1 .O 2.43 1.99 

(ratio of SMRs) 
Adjusted expected ( E ; )  78.10 10.71 10.02 
Test for homogeneity of SMR: x:= 33.7; test for trend: X: 

Workers employed 1925 or later 
No. of observed deaths 100 38 15 
Person-years ( x 1000) 74.677 13.693 5.940 
Crude rate 1.339 2.775 2.525 

(per 1000 person-years) 
Standardized rate 1.557 2.409 2.482 

(per 1000 person-years) 
Standard population ratea 1.031 1.031 1.031 

(per 1000 person-years) 
Expected deaths (E;) 74.12 13.84 6.83 

(standard population) 
CMF (%) 155.1 233.7 240.8 
SMR (%) 134.9 274.6 219.6 
Relative risk 1 .O 2.04 1.63 

(ratio of SMRs) 
Adjusted expected (E?)  121.21 22.63 11.17 

Test for homogeneity of SMR: x $ =  16.14; test for trend: X: = 8.74 

a See Example 3.1 
Based on 14 age x calendar periods for which data are available (see Appendix V) and therefore not comparable to the others. The 

other exposure categories have data for all 16 age x calendar periods. 

3.3 Comparison of directly standardized rates 

The goal of a comparative analysis is to describe the effects of the different levels of 
exposure on death rates from particular diseases. Ideally, this should be done at fixed 
levels of potentially confounding variables such as age and calendar year. However, the 
large number of comparisons and the instability of the component rates would then 
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Table 3.4 Notation used for two-way classification of 
deaths and person-years 

Stratum ( j )  Exposure level ( k )  

1 Deaths 
Person-years 

2 Deaths 
Person-years 

J Deaths 
Person-years 

Total Deaths 
Person-yea rs 

2 ... K Total 
dl2 - a .  d1K Dl 
n12 . - -  nlK Nl 
d22 4 K  D2 

n22 . ... . . n2, . N, ... . ... . 
d . dJK Dj 
n ~ 2  . . - n~~ N~ 
0, ... OK o+ 
n+2 ... n+K N+=n++ 

make for a rather confusing picture. In our example, 16 separate evaluations 
depending on the particular agelyear stratum would be required. One possible remedy 
is to base the evaluation on a summary measure such as the directly standardized rate. 

Table 3.4 introduces some notation for the number of deaths and person-years of 
observation in each of J strata (j = 1, . . . , J) and K exposure categories (k = 
1, . . . , K). Thus, the directly standardized rate for the kth exposure level may be 
written 

J 

= C ydjkInjk, 
j=l 

(3.1) 

where the weights are assumed to have been normalized so as to sum to one. These are 
divided by the standard population rate CyA; in order to find the CMFs for each level. 
In the examples below, the standard weights depend only on age (Table 3.2). 

Example 3.1 
Table 3.3 illustrates the application of several elementary methods to the grouped data from the Montana 

study. Crude and directly standardized death rates are shown in the first few rows of each part of the table, 
the two parts corresponding to the pre- and post-1925 subcohorts created to illustrate the effect of date of 
hire. Stratum-specific death rates for each exposure group, calculated from the deaths and person-years in 
Appendix V, were multiplied by the standard weights (Table 3.2) and summed to give the directly 
standardized rate. The standard population rate used for comparison is simply the weighted average of the 
stratum-specific standard rates, the same weights being used for each calendar period. Both sets of 
standardized rates were divided by the total of the weights for those age x calendar periods that had some 
person-years of observation for the particular exposure category. In the second part of Table 3.3, note the 
limitation in the use of the standardized rate as a comparative measure caused by a lack of data for certain 
age x calendar periods for persons with the longest exposure. There is a substantial jump in the standardized 
rates as one progresses from the first to the second exposure category, but a less obvious trend thereafter. 

In actual epidemiological practice, examination of dose-response trends in terms of 
directly standardized rates or CMFs seems largely and properly to be limited to studies 
in which there are substantial numbers of deaths in each exposure category. This 
ensures that the standardized rates are reasonably stable, so that evidence for a trend 
should be clear from a simple examination of the data. Although questions of statistical 
significance are generally not at issue, it is nonetheless prudent to report the standard '. 
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Table 3.5 Age-standardized death rates (all causes combined) and mor- 
tality ratios among male ex-smokers of 1-19 cigarettes per day, ages 50-74 
yea rsa 

Smoking category Number of Number of Standardized death rate CMF 
men deaths (per 100 000 person-years) 

Current smokers 118373 9117 2 359 172 
Ex-smokers by years 

since last smoked 
Under 1 81 4 64 2 212 161 
1-4 1 986 144 1 985 144 
5-9 1 909 128 1 840 134 
1 O+ 4 578 255 1 397 102 

Nonsmokers 62332 3512 1 374 100 

a From Hammond (1966) 

error of each summary rate (equation (2.7)) as a means of judging its stability. In case 
of uncertainty about the statistical significance of the observed results, the reciprocals 
of the corresponding variances could be employed as empirical weights in a formal 
regression analysis of the directly standardized rates on quantitative exposure 
variables. Such a regression analysis could also be helpful if the summary data were the 
only data available, for example, if they were obtained from published sources. 
However, statisticians have pointed out the need for caution in regression analyses of 
standard rates or other indices that have (age-specific). population denominators in 
both dependent and independent variables. 

Example 3.2 
The American Cancer Society study of one million men and women (Hammond, 1966) furnishes an 

example in which numbers of deaths are sufficiently large that direct standardization is appropriate. The 
effect of smoking on mortality was reported in terms of the ratios of the standardized death rates for various 
categories of smokers relative to the standardized rate for nonsmokers. Table 3.5, which concerns smokers of 
1-19 cigarettes per day, indicates that cessation of smoking for increasing lengths of time results in a decline 
in the all-causes death rate compared to that for continuing smokers. Ten years after cessation of exposure, 
the death rate among ex-smokers is down nearly to the level among lifelong nonsmokers. 

3.4 Comparison of standardized mortality ratios 

If the data are not so extensive and questions of sampling variability are of greater 
concern, it is generally appropriate to use the SMR in place of the CMF as a measure 
of how the death rates in each exposure category compare with those of the standard 
population. Evidence for a dose-response trend may then be sought in terms of an 
increase or decrease in the SMRs with increasing exposure. Referring to Table 3.4, let 
us denote by Ok = Cj djk the observed number of deaths in the kth exposure group. 
Keeping to the convention that quantities calculated from external standard rates are 
starred (*), the expected numbers of deaths may be written 
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and the standardized mortality ratios 

The grand totals of observed and expected deaths are denoted by 0, = C Ok and 
Ez = C E,*, respectively. 

The overall SMR for the entire cohort is given by O+IET, which was discussed in 
detail in Chapter 2. Here we are interested in comparisons among the different 
subcohorts, that is, among the different SMRks. When examining the SMRks for a 
trend with increasing exposure, it should be kept in mind that they are relative 
measures of effect calculated with reference to an external set of rates and that they 
may not be strictly comparable to one another. For reasons discussed at length in $2.3, 
ratios of the SMRks for different exposure categories may fail to summarize adequately 
the ratios of the stratum-specific rates. This occurs in precisely those circumstances 
when the SMR,s themselves are not good summary measures, namely when the ratios 
of cohort to standard death rates vary widely from one stratum to another. For 
example, it might happen that heavier exposures had the effect of adding progressively 
greater amounts to the age-specific (background) rates that would be expected in the 
absence of exposure. However, if much higher background rates were expected with 
the heavier exposures, for instance, because persons with such exposures tended to be 
older, such an additive dose-response relationship could well be missed by a 
comparison of SMRks. 

Example 3.3 
Table 3.6 presents fictitious data that illustrate the phenomenon just described. The effect of increasing 

exposure is to increase the two age-specific death rates by 2 per 100 person-years (low exposure) or 4 per 100 

Table 3.6 Fictitious data to illustrate a potential defect in the SMR 

Age range (years) SMR (%) CMF ( % I  

35-44 45-54 Total 

Unexposed 
Rate (per 100) 
Population 
No. of observed deaths 
No. of expected deaths 

Lightly exposed 
Rate (per 100) 
Population 
No. of observed deaths 
No. of expected deaths 

Heavily exposed 
Rate (per 100) 
Population 
No. of observed deaths 
No. of expected deaths 

Standard population 
Rate 
Weight 
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person-years (high exposure). These increases are reflected in increases in the CMFs, which are averages of 
the age-specific rates. However, due to the very skewed age distribution and the fact that the cohort to 
standard rate ratios vary markedly with age, the apparent trend as measured by the three SMR,s is reversed. 
Compare Table 2.13. 

Fortunately, the statistical confounding is not so serious in typical applications, and a 
dose-response analysis carried out in terms of SMRks often yields results that are quite 
similar to those obtained by other methods. The formal assumption required for an 
SMR analysis to be completely appropriate is that the stratum-specific death rates for 
each exposure class be proportional to the external standard rates, this being precisely 
the condition needed to assure comparability of the SMRks. This assumption may be 
investigated in practice by fitting an explicit model and comparing the observed and 
fitted number of deaths in each stratum-exposure cell, using the techniques described 
in the next chapter. Thus, the data themselves should give indications of situations in 
which inferences based on the SMR are liable to be seriously in error. When there 
appears to be heterogeneity of (multiplicative) dose-response effects between different 
age strata, it is better to use a different model to describe this heterogeneity rather than 
to summarize a number of disparate effects in a single SMR. 

When the proportionality assumption holds, we may regard the total number of 
deaths, Ok, observed at the kth exposure level as having an approximate Poisson 
distribution with mean OkE:, where E: represents the expected number of deaths and 
Ok the unknown SMR for this level of exposure in relation to the standard rates (see 
$4.3). The ratios of SMRks, which we denote qk = Ok/8,,  thus represent relative risks 
for each exposure level using the first level as baseline ( q l  = 1). These have precisely 
the same interpretation as do the relative risk parameters qk estimated in case-control 
studies ($4.5 of Volume 1). They represent the ratios of age-specific rates for different 
exposure categories, assuming these to be constant over age-calendar year strata. 

In this section we consider methods for estimating the individual relative risks, for 
determining their standard errors, for testing the statistical significance of each one 
individually, and for testing the global null hypothesis that the qk equal unity (i.e., the 
SMRks are equal) for k = 1, . . . , K against alternatives of heterogeneity and trend. 
The tests involve a comparison of the observed numbers Ok with fitted values 8; 
calculated under the hypothesis that each 8, is equal to some common value 8. These 
latter are easily obtained by distributing the total deaths 0, among the K exposure 
levels in proportion to the expected numbers: 

We refer to the 8: as 'adjusted expected values' to reflect the fact that they are equal 
to the E,* scaled by the overall SMR, O+/E:, so as to ensure that Ck 8: = Ck 0,. 

( a )  Two dose levels: exposed versus unexposed 

The simplest comparison is between two levels of exposure, say exposed (k = 2) 
versus unexposed (k = 1). Thus, we regard 0, as a Poisson variable with mean 8,ET 
and 0, as Poisson with mean 8,E,*. If we set 8 = el ,  11, = q, = 02/8, and 8q = 02, 
suppressing the subscripts for clarity, the parameter of interest is the relative risk q ,  8 
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playing the role of a nuisance parameter that interferes with our inferences concerning 
v. According to standard principles of statistical inference (Cox & Hinkley, 1974), it is 
appropriate in such circumstances to consider a distribution for the observed data 
which depends only on the parameter of interest. This is quire easy here since the 
distribution of two Poisson variates conditional on their sum is binomial (Lehman, 
1959). More precisely, 

where 

or, equivalently, 

Statistical inferences about the relative risk v ,  whether exact or approximate, may 
therefore be carried out by making inferences about the binomial parameter n in (3.5) 
and then transforming v ia  (3.6). They are formally identical to those used in the 
analysis of matched case-control pairs with dichotomous exposures (85.2 of Volume 1). 
The relevant equations need merely be rewritten for use with cohort data. 

Under the null hypothesis vo = 1 we have no = E,*/ET, and an exact test is obtained 
from the tail probability of the corresponding binomial distribution. For example, if 
0' > E,*, the one-sided significance level or p value is given by 

In practice, it will usuallysuffice to use the approximate chi-square statistic based on 
the observed deviation of 0' from its expectation. This may be written 

where we have used the fact that Var (0') = O+no(l - no) = 8f E,*/(E: + E;) and 
0, - 81 = -(02 - E;). The numerator(s) in (3.7) are reduced in absolute value by 112 

' 
before squaring for a continuity correction. 

( b )  Point and interval estimation of the relative risk 

The maximum likelihood estimate of n is A = 0 2 / 0 + ,  from which it follows that the 
maximum likelihood estimate of v is 
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the ratio of the two SMRks. Exact 100(1- a)% confidence limits for ;rt may be found 
from the charts of Pearson and Hartley (1966) or computed using the equations 

and 

where Fa12(v1, v2) denotes the upper 100,12 percentile of the F distribution with vl and 
v2 degrees of freedom. The limits (3.9) are inserted into (3.6) to obtain confidence 
limits qL and for the relative risk. Alternatively, approximate limits based on the 
normal approximation to the binomial probabilities (Cornfield, 1956) are given as the 
solutions to the equations 

and (3.10) 

These are quadratic equations in the unknown variable 5 = fi. 
Example 3.4 

Suppose 0, = 5 and.0, = 14 bladder cancer deaths are observed among unexposed and exposed members 
of an industrial cohort, respectively, whereas El  = 7.3 and E2 = 5.5 were expected from vital statistics 
available for the region in which the plant was located. The overall SMR is O+/E+ = 19112.8 = 1.484, and 
adjusted expected values are ET = 7.3 X 1.484 = 10.84 and E; = 5.5 x 1.484 = 8.16. Individual SMRs are 
517.3 = 0.685 and 1415.5 = 2.545 for unexposed and exposed so that 6 = 2.54510.685 = 3.72 is the point 
estimate of relative risk. The test (3.7) for the hypothesis q = 1 gives 

with continuity correction @ = 0.01). Using equation (3.9) and the fact that Fo.,,(12, 28) = 2.45 and 
F0.,(30, 10) = 3.31, exact 95% confidence limits on the associated binominal probability are 

and 

from which we determine qL = 1.26 and qu = 13.2 as limits on the relative risk. The approximate limits are 
found as solutions to 

and 

these being qL = 1.25 and qu = 11.8, respectively. 
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( c )  Testing for heterogeneity and trend in the SMRs 

The same methods may be used to estimate the relative risks qk for. each level of 
exposure k = 2, . . . , K and to test the significance of each one individually. One 
merely substitutes Ok and I?: for O2 and E; in equations (3.7) through (3.10). 
However, since interpretation of a large number of separate comparisons is difficult, 
we also need a test of the hypothesis that all K qk are simultaneously equal to unity. 
This is easy to derive using the framework already introduced (Kilpatrick, 1962, 1963). 
Conditional on the total observed deaths, 0 + ,  the joint distribution of 0 = 
(01, . . . , OK) under the null hypothesis is multinomial with cell occupancy probabil- 
ities (nl, . . . , nK) where nk = E:IET. A test of the global null hypothesis is thus 
achieved by comparing the Ok to the fitted values E: using the standard criterion 

which should be referred to tables of the chi-square distribution with K - 1 degrees of 
freedom. 

One disadvantage of (3.11) is its relative lack of power against the specific alternative 
hypothesis of a trend in the SMRks with increasing exposure. Even if none of the 
pairwise comparisons of baseline and exposure groups nor the multi-degree of freedom 
statistic (3.11) yields a significant result, substantial evidence for a dose-response trend 
may nevertheless be generated if the estimated relative risks are in the hypothesized 
order. The Poisson trend statistic (Armitage, 1955; Tarone, 1982) was designed 
especially to detect such monotonic dose-response relationships. If xk denotes a 
quantitative dose level associated with the kth exposure category, this single degree of 
freedom test is given by 

In situations in which the categories are merely ordered, and there is no specific 
quantitative exposure, it suffices to set xk = k. Formal justification for both (3.11) and 
(3.12) stems from the fact that they are efficient score tests under various sets of 
assumptions, including the log linear models for Poisson variables discussed in the next 
chapter (Tarone & Gart, 1980). 

Example 3.5 
Returning to the Montana data, the standard rates shown in Table 3.2 were used in conjunction with the 

data in Appendix V to produce expected numbers of deaths and SMRks for each exposure category using 
equations (3.2) and (3.3). With the exception of the highest dose category for the post-1924 cohort, the 
SMR,s are in reasonable agreement with the corresponding CMF,s (Table 3.3). However, the CMF for this 
category is not comparable to the others since there are no data for the earliest calendar period for two age 
groups. To alleviate this difficulty, we could, of course, restrict all CMFs to those age x calendar period 
strata for which full data are available. Relative risks obtained by dividing each SMR, by the SMR for 0-0.9 
years exposed indicate that workers hired before 1925 who had 15 or more years of moderate to heavy 
arsenic exposure have mortality rates from respiratory cancer that are approximately three times higher than 
the rates among workers who remained in areas of the plant where only light exposures occurred. 

The penultimate rows in both parts of Table 3.3 show the adjusted expected values E,* for the four 
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exposure categories. These were obtained in accordance with equation (3.4), multiplying the expected 
numbers shown in the sixth row of each part of the table by the overall SMR. In the 0 - 0.9 years exposure 
group for pre-1925 employees, for example, we have 21.47 x (115J31.62) = 78.10 cases expected after 
adjustment. The global test (3.11) yields 

as shown at the bottom of the first part of Table 3.3. Likewise, the trend statistic (3.12) is 

Note the use of the coded levels x, = k in this example. 

(d) Trend test for exposure effect versus trend test for dose-response 

The object of a dose-response analysis is to demonstrate a continuously increasing 
response to increasing dose or, in the present context, a continuously increasing 
(relative) risk with increasing exposure. While the trend statistic (3.12) is designed to 
detect such alternatives to the null hypothesis (no effect of exposure), it may 
sometimes give a significant result even if the relative risks are not continuously 
increasing. This could happen, for example, if the risk were increased for any amount 
of exposure relative to no exposure but the risks among the different exposure levels 
remained constant. The causal inference linking exposure and disease is less secure in 
such cases, because of the greater possibility that a dose-response function that jumps 
up initially and then remains flat could be produced by bias or confounding. For 
example, the weak relationship between coffee drinking and bladder cancer observed 
in several case-control studies was interpreted as noncausal on just such a basis ($3.2 of 
Volume 1). One may wish to restrict the trend statistic to a comparison of positive dose 
or duration levels and exclude the baseline nonexposed category when testing 
specifically for a dose-response effect. 

Example 3.6 
Returning to Table 3.3, we noted significant 'trends' in relative risk with increasing duration of 

heavy/medium arsenic exposure for both the pre-1925 and post-1925 sub-cohorts (~:=30.5 and 8.74, 
respectively). However, the relative risk estimates in fact showed little variation among the three highest 
categories of exposure. Restricting the trend analyses to the categories 1.0-4.9 years duration, 5.0-14.9 
years, and 15+ years, this being accomplished by adjusting the expected values to agree with the total 
observed for the three categories, and applying the usual statistic (3.12), we find X: = 1.67 (p = 0.19) for the 
pre-1925 cohort and X: = 0.60 (p = 0.44) for the post-1925 cohort. This confirms what is already apparent 
from an examination of the relative risks, namely, that there is no evidence for an increasing dose-response 
trend with exposure duration above one year. 

If the object of the analysis is primarily to test for a possible carcinogenic effect, 
however, the baseline or lowest dose level should definitely be included in calculation 
of the trend. An issue that then arises is whether the intercept of the regression line of 
SMR on dose, the slope of which is implicitly being tested in a trend analysis, 
necessarily passes through unity or instead through some other value that represents 
the true position of the cohort uk-a'-uis the standard population. If the true SMR at 
zero dose were somehow known a priori to be equal to one, although this is unlikely in 
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practice, this would permit a more powerful analysis and yield a more significant result 
on average (Gilbert, 1983). 

The trend statistic (3.12) implicitly assumes that the intercept is being estimated from 
the data. One argument in favour of estimating the intercept is that the cohort may 
have higher death rates than expected even in the low dose range, due to the effects of 
other risk factors. Or the initial SMR may be less than 1 due to a 'healthy worker' 
selection effect. A trend analysis that assumed it was equal to 1 would yield a trend test 
statistic that was too large in the first case and too small in the second. With the 
Montana study, for example, the SMRks for respiratory cancer in the lowest dose groups 
are 237.5% and 134.9% for the pre- and post-1925 cohorts, respectively (Table 3.3). 
It is unclear whether the excess is due to generally higher levels of smoking in the study 
population or to the effects of arsenic exposures that even 'low dose' persons may 
receive. Thomas, D.C. and McNeill (1982) note that other reasons for the regression 
line not to pass through unity at zero dose, besides the possible noncomparability of 
the standard population, are that the assumed dose-response function is wrong or that 
random errors in dose measurement have led to a slope estimate that is too shallow. In 
the face of such uncertainty, it does not seem prudent to make a strong assumption 
about the intercept. 

(e) Selection of the dose metameter 

In order to carry out the test for trend we must assign quantitative values to each 
exposure category. Underlying the test is the implicit assumption that some transfor- 
mation of thedisease rate is a linear function of a dose variable x .  It is the slope of this 
relation that is being tested (Tarone & Gart, 1980). Thought should be given to the 
most appropriate values, since the choice sometimes can have a substantial influence 
on the significance of the result. Often one will want to choose the dose scale so that 
there is an approximately linear relationship between disease rates and exposures, at 
least at low doses. Multistage models of carcinogenesis (Chapter 6) suggest a low-order 
polynomial relationship of the form A(d) = Po + P,d + P,d2 + . . . , where all 
coefficients are positive. These imply that there is an approximately linear relationship 
between relative risk and exposure at low (measured) doses. Other assignments of x 
values to exposure categories may be tried also, although problems of interpretation 
will arise if a large number of separate tests are carried out on the same data. 

Example 3.7 
Table 3.7 shows numbers of deaths from haematological malignancies among workers at the Portsmouth 

(US) Naval Shipyard, according to the cumulative radiation exposure received by the time of death 
(Najarian, 1983). Also shown are person-years denominators by dose category. In order to test for a trend in 
the Poisson rates with increasing dose, we use Armitage's (1955) statistic, which has the same form as (3.12) 
except that the expected deaths E~ are obtained by allocating the total deaths in proportion to the 
person-years in each category. Both observed and expected deaths are shown in Table 3.7. 

Note that the intervals used for grouping the data into exposure categories are approximately logarithmic. 
After the initial control category, each group of radiation doses is approximately ten times larger than the 
preceding one. Thus, the usual assignment of coded values xk = k to the K = 7 exposure categories 
effectively means that a log dose metameter is being used. An alternative would be to use a linear dose 
metameter, assigning to each exposure category the average of the doses included within it. Someone who 
believed that the true dose-response curve was discontinuous and that there was a threshold at 1 rad might 
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Table 3.7 Observed and expected deaths from haematological malignancies 
among Portsmouth (USA) Naval Shipyard workers, by cumulative radiation dosea 

Lifetime No. of observed No. of person- No. of expected Dose metameters 
dose (rems) deaths years deathsb 

Linear Log Threshold 

- ---- 

Total 17 122 455 17.00 

Test for trend (x:): 
p value (one-sided): 

a From Najarian (1983) 
Assuming constant rate in all dose groups 

assign x, = 0 for k = 1, 2, 3, 4, 5, and x, = 1 for k = 6 and 7. We would have to be suspicious of this choice 
for the threshold, however, since setting it at 1 rad for these particular data obviously maximizes the 
difference in relative risks one will observe between the 'exposed' (x, = 1) and 'unexposed' (x, = 0). 

The three dose metameters lead to rather different trend statistics in this example. The logarithmic scale 
yields = 2.25 @ = 0.07; one-sided), whereas the value on the arithmetic scale is somewhat lower at 
x2 = 1.19 @ = 0.14). The most significant result is obtained from the threshold model comparing doses over 
and under 1 rad (x2 = 3.53, p = 0.03). Setting the threshold at 0.5 rads reduces x2 from 3.53 to 2.32, 
indicating the sensitivity to a basically arbitrary threshold. Since the results obtained with the continuous 
scales do not attain statistical significance, one would conclude little more than that the situation perhaps 
warranted further investigation. No excess of deaths due to cancer nor specifically to cancer of the blood or 
blood-forming tissues was found in the analysis of these data performed by Rinsky et al. (1981). It seems 
likely that the positive results reported from the earlier proportional mortality study (Najarian & Colton, 
1978) were biased by the incomplete ascertainment of deaths that had occurred among workers at the facility 
(Committee on the Biological Effects of Ionizing Radiation, 1980). See also the discussion in 01.6. 

( f )  Alternative tests for trend 

The statistic (3.12) that we have suggested for a trend test relies heavily on the 
assumed Poisson variability of the observed numbers of deaths. In some situations in 
which there are a large number of different comparison groups, it may be more 
prudent to carry out a standard regression analysis of the SMRks or their logarithms on 
the quantitative dose levels. Especially when the SMRks are calculated for different 
intervals of calendar time, the observed variation in numbers of deaths between 
adjacent time intervals may be greater than would be expected from Poisson sampling 
variation. It is then more appropriate to evaluate the linear time trend against the 
observed background of year-to-year variation rather than against the smaller 
theoretical variance. The issue is complicated by the fact that the estimate of residual 
variation from the regression analysis may be heavily dependent on the particular 
regression model chosen, or may be unstable because the number of different dose 
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categories does not provide a sufficient number of 'degrees of freedom' for error 
estimation. Furthermore, there is some controversy regarding the extent to which one 
should account for the underlying Poisson variability by giving greater weight in the 
regression analysis to SMR,s based on large numbers of deaths. 

The ideal solution is probably intermediate between an unweighted analysis, in 
which most of the observed variability is attributed to extraneous factors rather than 
sampling, and an analysis based entirely on Poisson sampling theory (Pocock et al., 
1981; Breslow, 1984a). A practical alternative is to carry out both Poisson and 
unweighted regressions and compare results. 

Example 3.8 
Table 3.8 presents data from the study of Rocky Mountain uranium miners quoted by Thomas, D.C. and 

McNeill (1982). There is a reasonably linear relationship between the logarithm of the SMR and the 
logarithm of the average cumulative radiation exposure, measured in working level months (WLM) (Fig. 
3.2). As noted in equation (2.9), the (Poisson) variance of the log SMR is estimated approximately by the 
reciprocal of the number of deaths, which suggests we use the number of deaths to weight the individual 
observations. A weighted linear regression analysis of log SMR on log WLM yields a residual (weighted) 
sum of squares of 6.68 on six degrees of freedom. We conclude that the extra-Poisson variability in this case 
is minor or nonexistent, since, otherwise, the residual mean square would be substantially larger than one. 
The corresponding F statistic for the significance of the linear trend is 57.4 on one and six degrees of 
freedom. An unweighted analysis yields F,,, = 59.8. Both results confirm the highly significant X: = 95 that is 
found from the usual trend test (3.12). 

If one considers instead a linear regression of the SMR, on dose x,, weighting each observation by 
(~;)'/0,, where Ez is the expected and 0, the observed number of deaths, the residual mean square is 
11.09/6 = 1.85. In view of the preceding results, the excess above unity is probably due more to the lack of fit 
of the linear model than to non-Poisson variation. The F statistics are 41.9 for the weighted analysis and 
261.4 for the unweighted. The discrepancy between the weighted and unweighted test statistics on the 
arithmetic scale results from the data point for the highest dose category being far removed from the others 
and having a much greater influence on the unweighted analysis than the weighted one. This instability 
reminds us of the dangers of the uncritical use of least-squares regression techniques, especially with small 
samples, and suggests that they are best reserved for situations in which there is a large number of dose 
categories. Alternatively, modern techniques of robust regression (Huber, 1983) may be used. 

Table 3.8 Lung cancer risk in US uranium minersa 

Cumulative W L M ~  Person-years Lung cancers SMR (%) 

Range Midpoint Observed Expected 

0-119 60 5 183 3 3.96 76 
120-239 180 3 308 7 2.24 312 
240-359 300 2 891 9 2.24 402 
360-599 480 4 171 19 3.33 571 
600-839 720 3 294 9 2.62 344 
840-1 799 1 320 6 591 40 5.38 743 

1 800-3 71 9 2 760 5 690 49 4.56 1 075 
>3719 7000(est) 1 068 23 0.91 2 727 

All 1 180 (mean) 32 196 159 25.24 

a From Committee on the Biological Effects of Ionizing Radiation (1980) as quoted by 
Thomas, D.C. and McNeill (1982) 

WLM, working-level-month measure of cumulative exposure 
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Fig. 3.2 Log-log plots of SMRs for US uranium miners from Table 3.8 

Log working-level months 

( g )  Some examples from the literature 

Doll and Peto (1976) reported results of the 20-year follow-up of British doctors to 
study cigarette smoking and mortality. Most of their analyses compared cause-specific 
mortality rates among exposure categories determined by smoking history, using 
methods of internal standardization that are described below. However, the authors 
also wanted to see whether the fact that doctors gave up smoking more rapidly than 
members of the general population was reflected in an improvement in their relative 
survival. Thus, mortality rates for all of England and Wales were used as a standard for 
computation of SMRks for each calendar year for two causes of death (Fig. 3.3). The 
evident decline in the relative rates of lung cancer was confirmed by a least-squares 
linear regression analysis of the 20 SMRks on calendar year. 

Another example illustrates more specifically the use of the Poisson trend statistic. 
Table 3.9 presents leukaemia mortality rates during various intervals following first 
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Fig. 3.3 Trend in number of deaths certified in British male doctors as percentage of 
number expected from experience of all men in England and Wales of the 
same ages. Results are given from the second to the twentieth years of study 
for lung cancer (a) (459 deaths observed versus 931.9 expected) and all 
other cancers (0) (1238 deaths observed versus 1630.7 expected). Regres- 
sion lines on time were calculated from data for the fourth to the twentieth 
years of study (regression coefficients: -1.4 for lung cancer and 0.0 for all 
other cancers). From Doll and Peto (1976) 

0 . I . . ,  1 I i 
01 2 3 4 5  10 I5 2 0  

Time since start of study [years) 

treatment for a cohort of ankylosing spondylitis patients (Smith & Doll, 1982). The 
expected numbers shown were also obtained from mortality rates for England and 
Wales specific for sex, age and calendar year. In this example, the statistic (3.12) gives 
a value of X: = 10.40 and provides clear evidence for a decline in the observed: 
expected ratios with increasing time since exposure. 

Finally, Table 3.10 presents data from a cohort study of US and Canadian insulation 

Table 3.9 Observed and expected leukemia deaths among 
ankylosing spondylitis patients, by time since initial treatmenta 

Time since treatment (years) Total 

Observed 6 10 6 3 1 4 1 31 
Expected 1.00 0.89 0.87 0.90 0.96 0.90 0.95 6.47 
SMR 6.00 11.24 6.90 3.33 1.04 4.44 1.05 4.79 

a From Smith and Doll (1982) 
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Table 3.10 Lung cancer deaths and person-years among asbestos 
and insulation workers according to duration of time since initial 
exposurea 

Duration Number Person-years No. of observed No. of expected SMR 
(years) of men deaths deaths (%) 

0-9 8 190 26 393 0 0.7 - 
10-14 9063 29003 7 2.7 255 
15-19 9948 34066 29 8.5 340 
20-24 8887 31 268 59 17.0 348 
25-29 6 596 20657 105 21 .O 500 
30-34 3 547 11 598 112 18.4 608 
35-39 2020 5403 65 11.5 568 
40-44 1108 3160 40 8.1 493 
45+ 1448 5305 69 17.8 389 

a From Selikoff et a/. (1980) 

workers (Selikoff et al., 1980). Ratios of observed to expected lung cancer deaths 
reached a peak between 30-35 years from the initial exposure to asbestos. This does 
not mean, of course, that the absolute rates of lung cancer decline after 35 years, 
although this is a common misconception. The death rates continue to increase as the 
exposed workers grow older, but at a slightly lower rate in comparison to the general 
population than was true during earlier years. Because the SMRs first rise and then 
fall, one could well expect the trend statistic not to yield a significant result in this 
example. Various possible explanations have been suggested for the decline. One is 
that the combined exposure to asbestos and cigarettes was so lethal that heavy 
smokers were eliminated from the study cohort at an even faster rate than they were 
eliminated from the general population. Another possibility is that the termination of 
exposure following retirement, which would start to occur 35 years or so after initial 
employment, led to an attenuation of subsequent relative risk but at a much slower 
pace than that noted for ex-smokers (Table 3.5). Thirdly, it should be noted that there 
is a strong confounding effect in this cohort between period of initial exposure, when 
different types of asbestos fibres may have been used or the exposure intensity 
different, and the time since first exposure. Finally, the SMRks reflect any difference in 
smoking patterns between asbestos workers and the general population, and these also 
may have been changing over time. 

3.5 Comparison of internally standardized mortality ratios 

The methods of analysis discussed so far rely on standard rates that are external to 
the study cohort in order to  make comparisons between exposure groups. Questions 
about the appropriateness of the particular standard selected and the comparability of 
the resulting SMRks suggest that a more satisfactory approach would be to use the 
observed data, without consideration of any outside rates, when making internal 
comparisons. 

From a theroretical viewpoint, the method of internal standardization is probably 
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best regarded as a rough and ready approximation to the more complicated but more 
appropriate methods of grouped data analysis that are presented in the next section. If 
there are only two exposure categories, it tends to yield mildly conservative tests and 
estimates in typical practice (Bernstein et al., 1981; see also Fig. 4.3). The conservatism 
could be substantial if age and calendar time or other stratification variables strongly 
confound the exposure-disease relationship. Nevertheless, the method of internal 
standardization enjoys a considerable following due to its relative simplicity and strong 
intuitive appeal. 

If there are more than two exposure categories, internal standardization does not 
eliminate the problem that was discussed at length in 02.3 concerning the comparability 
of SMRs. Although the external standard is replaced by an internal standard consisting 
of the combination of all exposure groups, in particular examples this pooled group 
may be dominated by one or two large exposure groups. When comparing the ratios of 
SMRks for two other exposure groups, therefore, it is possible for the same type of bias 
to occur. 

The calculations required for internal standardization are surprisingly easy. Refer- 
ring to the data layout in Table 3.4, the stratum-specific death rates calculated without 
regard to exposure category are A, = D,/N,. It follows that the expected number of 
deaths in the kth exposure class, assuming that exposure had no effect on the rates, is 

These internally derived fitted values share with the adjusted expected numbers (3.4) 
the property that their sum is equal to the total number of observed deaths. They are 
used in place of the E: in equations (3.7), (3.8), (3.11) and (3.12) in order to make 
approximate estimates of the relative risks for each exposure category and approximate 
tests of their heterogeneity and trend. As already noted, these tests and estimates tend 
to be somewhat conservative, more so if there is a high degree of association between 
the stratum variables and the exposures. However, this feature is not well illustrated by 
the data on the Montana workers, since, as often happens .in practice, the degree of 
confounding is rather slight. 

Example 3.9 
By pooling the respiratory cancer deaths and person-years shown in Appendix V over period of hire and 

duration of exposure, one obtains the pooled death rates shown in Table 2.8 by ten-year intervals of age and 
calendar period. Table 3.11 presents the expected numbers of deaths calculated for each exposure category 
by multiplying the pooled rates by the appropriate number of person-years and summing in accordance with 
equation (3.13). Separate analyses were carried out according to period of employment. Note the similarity 
between the internally fitted values and the adjusted expected values shown in Table 3.3. The latter are 
slightly more extreme and therefore indicate a slightly steeper dose-response relationship. For example, the 
estimated relative risk for the highest exposure category among those employed prior to 1925 is 3.22 for 
external standardization versus 3.09 for internal standardization. 

Inserting the observed and expected values from Table 3.11 in equations (3.11) and (3.12), following 
exactly the same method of calculation as in Example 3.5, the values of the tests for heterogeneity and trend 
are X g  = 31.7 and XT = 28.3, respectively, for the pre-1925 subgroup. These are less than the values found 
with external standardization, but they are still highly significant ( p  <0.0001). A similar result holds for the 
post-1925 subgroup. 
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Table 3.1 1 Dose-response analysis of respiratory cancer deaths among Montana 
smelter workers, based on internal standardization 

Cumulative years of moderatelheavy arsenic exposure 

0-0.9 1.0-4.9 5.0-14.9 15+ Total 

Workers employed before 1925 
No. of observed deaths 51 17 13 34 115 
No. of expected deaths (adjusted 77.58 10.51 10.18 16.73 11 5.00 

for age and calendar year) 
Relative risk (using ratios of 1.0 2.46 1.94 3.09 

Observed/Expected) 
Relative risk (Mantel-Haenszel) 1.0 2.49 2.00 3.14 
Approximate test for homogeneity, X: = 31.7; test for trend, Xi = 28.3 

(using observed and expected numbers only with equations (3.1 1) and (3.12)) 
Complete test for homogeneity, X: = 31.9; test for trend, Xi = 28.5 

(using full variances with equations (3.24) and (3.25)) 

Workers employed in 1925 or after 
No. of observed deaths 100 38 15 8 161 
No. of expected deaths (adjusted 122.1 2 22.20 1 1.04 5.64 161 .OO 

for age and calendar year) 
Relative risk (using ratios of 1.0 2.09 1.66 1.73 

Observed/Expected) 
Relative risk (Mantel-Haenszel) 1.0 2.13 1.64 1.73 
Approximate test for homogeneity, X ;  = 17.7; test for trend, Xi = 10.1 

(using observed and expected numbers only with equations (3.11) and (3.12)) 
Complete test for homogeneity, X: = 17.8; test for trend, = 10.2 

(using full variances with equations (3.24) and (3.25)) 

Table 3.12 Number of men developing nasal 
sinus cancer by age at first employment and 
number expected after standardization for year 
of employment and calendar year of 
o bservationa 

Age at first No. of men developing Observed as 
employment nasal sinus cancer proportion of 
(years) expected 

Observed Expectedb 

Under 20 2 5.36 0.37 
20-24 9 1 1.30 0.80 
25-29 13 12.26 1.06 
30-34 8 6.34 1.26 
35 + 8 4.73 1.69 
All ages 40 39.99 
X 2  for trend = 5.2; degrees of freedom (df) = 1; 
p = 0.03 

a From Doll et al. (1970) 
If age at first employment had no effect on susceptibility to 

cancer induction 
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An example from the literature 
A classic example of the use of internal standardization to examine the effect of various time factors on 

mortality rates is the report of the study of nickel refinery workers in South Wales by Doll et al. (1970). The 
study design is discussed in detail in Appendix ID. Cancer deaths and person-years denominators were 
classified simultaneously by year of employment (a fixed variable), by age at employment (fixed), and by 
calendar year of occurrence (time-varying). The effect of each factor was then examined according to the 
methods described above, using simultaneous stratification on the other two factors. The results shown in 
Table 3.12 indicate that age at first employment had an influence on the relative incidence of nasal sinus 
cancer even after the effect of years since exposure (as determined by year of employment and calendar year 
of observation) had been accounted for. However, calendar year had little effect following adjustment for 
the other two variables (Table 3.13). The authors concluded: 'The results suggest that, so far as nasal cancer 
is concerned, susceptibility to induction increases with age and that the risk remains approximately constant 
for between 15 and 42 years after the carcinogen has been removed from the environment.' The last 
statement is a reference to the fact that no nasal sinus cancer death was observed among men first employed 
after 1925, when the manufacturing process was changed. We can agree with these conclusions, provided we 
bear in mind that they refer to relative risks of cancer mortality rather than absolute ones. Additional 
analyses of these data which incorporate more recent follow-up are used in Chapters 4, 5 and 6 to illustrate 
some principles of model fitting. 

Table 3.13 Number of men developing nasal 
sinus cancer by calendar period of observation 
and number expected after standardization for 
year and age at first employmenta 

Calendar period No. of men developing Observed as 
of observation nasal sinus cancer proportion of 

expected 
Observed Expectedb 

1 939-1 941 
1 942- 1 946 
1947-1951 
1952- 1956 
1957-1961 
1962-1 966 
All years 
X 2  for trend 
0.3 < p < 0.5 

7 3.63 1.93 
8 7.28 1.10 
9 9.66 0.93 
5 9.34 0.54 
6 6.28 0.96 
5 3.82 1.31 

40 40.01 
= 0.95; degrees of freedom (df) = 1 ; 

a From Doll et al. (1970) 
blf  year of observation had no effect on risk of developing 

cancer 

3.6 Preferred methods of analysis of grouped data 

We repeatedly emphasized in Volume 1 that the goal of a case-control study 
conducted in a given population was to obtain the same estimates of relative risk as 
would have been found in a cohort study of that population, had one been performed. 
Furthermore, methods of analysis of case-control studies were virtually identical to 
those of cohort studies uis-h-uis estimation and testing of hypotheses about relative 
risk. Thus, it should come as no surprise that the preferred methods of cohort analysis, 
which we now describe, are nearly identical to those presented in the earlier volume. 

The correspondence between case-control and cohort data is easily seen by 
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comparing the data layout of Table 3.4 with that shown in equation (4.40) of Volume 
1. There, we considered the joint distribution of cases (aki) and controls (cki) in K 
exposure groups and I strata; here we deal with deaths and person-years cross-classified 
into K exposure groups and J strata. Making the substitution of j for i, denoting the 
cases (deaths) by dJk rather than a,, and considering a fixed number nJk of person-years 
rather than a random number cki of controls in each cell, the formal identity of the two 
situations is complete. All of the test and estimates derived in Volume 1 for a 
dose-response analysis of case-control data have analogues for use with cohort data. 
Moreover, the calculations required for cohort data are in most respects even simpler 
than those for case-control data. 

Consider the methods of estimating the relative risk associated with the kth exposure 
level. For both cohort and case-control studies, these parameters represent the rate 
ratios for the kth level relative to the first level - ratios that are assumed to remain 
constant across the various strata. For case-control studies, the odds ratios 
(akicli)/(alicki) are good estimates of the corresponding stratum-specific relative risks, 
and, hence, the analysis may be carried out in terms of summary estimates and tests for 
heterogeneity and trend in the odds ratios ($2.8, Volume 1). Precisely the same is true 
of cohort studies, except that the 'odds ratios' (dJknjl)/(di,njk), rather than being mere 
approximations to the desired rate ratios, are in fact best estimates of those ratios for 
the indicated stratum and exposure level. 

Some differences between the test statistics used for case-control and cohort studies 
arise from the different sampling schemes that generate the basic data. In cohort 
analyses, we regard the observed deaths djk as having Poisson distributions with means 
qkLjlnik, where A,, denotes the baseline death rate in stratum j, and qk is the relative 
risk associated with exposure at level k. (A more complete statement of this model, its 
rationale, and its consequences is presented in the next chapter.) If follows that the 
conditional distribution of the deaths (djl, . . . , djK) in each stratum is multinomial 
with denominator Dj and cell occupancy probabilities njk = qknik/Cl qlnjI). For the 
case-control study, the conditional distribution of the cases (a,,, . . . , a,,), given the 
marginal totals in the 2 x K table (equation 4.40 in Volume I),  was multidimensional 
hypergeometric with noncentrality parameter depending on the relative risk q k .  
Differences between the variances of the multinomial and hypergeometric distribu- 
tions lead to slight differences in the corresponding test statistics. The cohort statistics 
are simpler because one does not need to consider the marginal totals djk + nik at all. 
By substituting nik for both cki and mi, 4. for both no, and Ni and dik for a,, many of 
the statistics developed in 54.5 of Volume 1 are converted into precisely the form 
needed for cohort analyses. Furthermore, just as the tests presented there were derived 
as efficient score tests based on linear logistic models for binomially distributed 
case-control data, the versions of those same tests presented here are derived as 
efficient score tests for analogous hypotheses based on log-linear models for Poisson 
distributed cohort data. 

(a) Two dose levels: exposed versus unexposed 

Let us start by considering once again the simple problem of comparing death rates 
for exposed versus unexposed without any stratification. We regard 0, and 0, as 
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Poisson variables with means ANl and WAN2, respectively, where A represents the 
background rate, I) the relative risk, and Nl and N2 are the corresponding 
person-years. Conditional on the total 0, = 0, + 02 ,  0, is binomially distributed with 
parameters 0, and n = WN21(Nl + WN2). The situation is formally identical to that 
already considered in 83.4; E,* and Ez have simply been replaced by Nl and N2. 
Hence, one may apply the same procedures for exact and approximate inferences 
about n using the binomial distribution and its normal approximation. These are the 
analogues for cohort analysis of the exact and approximate methods for case-control 
data developed in 884.2 and 4.3 of Volume 1. 

Example 3.10 
Suppose that 0, = 5 lung cancer deaths are observed among a cohort of unexposed persons with N1 = 7300 

person-years of observation, whereas 0, = 14 such deaths occur among the exposed with N2 = 5500 
person-years of observation. These are precisely the numbers of deaths considered in Example 3.4, and the 
person-years N,: N2 and expected numbers ET: E,* are likewise in equal proportion. Consequently, the 
calculations made earlier apply here as well: $ = 3.72 with exact 95% limits of (1.26,13.2) and approximate 
ones of (1.25, 11.8). 

In more realistic situations, the deaths and person-years are stratified into a series of 
J 2 x 2 tables (j = 1, . . . , J )  representing different age strata, as shown in Table 3.4. 
Conditional on fixed values for the total D, of deaths in the jth stratum, the number of 
these that occur at the second exposure level is binomially distributed with parameters 
Dj and 3 = + ~ n j 2 ) .  Exact inferences about W could, in principle, be made 
from the convolution of these J binomial distributions in the same fashion that exact 
inferences about the odds ratio in case-control studies are made from the convolution 
of the corresponding hypergeometric distributions (Gart, 1971). However, the usual 
normal approximations are entirely satisfactory for most practical purposes. 

(b) Summary test of significance 

A test of the null hypothesis W = 1 is obtained by referring the standardized deviate 

1 0 2  - E ( 4 ) 1 -  112 lo2 - C:=l n j 2 ~ , l ~ ~  - 112 x =  - - 
{Var (0,)) "2 

2 112 {C:=1 Djnj1nj2INj) 

to tables of the normal distribution. When squared, this is the analogue of the 
summary statistic used to test for a relative risk of unity in case-control studies 
(equation 4.23 in Volume 1). Note the use of the continuity correction to improve the 
normal approximation. 

(c) The maximum likelihood estimate 

In large samples the most accurate estimator of .11, is the maximum likelihood 
estimate, obtained by setting the observed number of deaths 0, equal to its expected 
value 
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Since solution of (3.15) requires iterative calculations, its use is generally restricted to 
computer analyses and in particular those which involve the fitting of log-linear models. 
Note that the problems with maximum likelihood estimation of the common odds ratio 
in a large series of small 2 x 2 tables (Breslow, 1981) do not apply to the present 
situation. Under the Poisson model, conditional and unconditional maximum likeli- 
hood estimators are identical (Haberman, 1974). 

( d )  The Mantel-Haenszel estimate and its standard error 

The Mantel-Haenszel estimate for cohort data is a simple and robust alternative to 
maximum likelihood. It is written 

where Rj and Sj are defined by the numerator and denominator terms on the right-hand 
side of the equation. Clayton (1982) has shown that this estimate arises at the first stage 
of iteration of one of the computational methods used to find the maximum likelihood 
estimate. Numerical examples presented below indicate a very good agreement 
between the two. 

A robust variance formula for the Mantel-Haenszel estimate was lacking at the time 
Volume 1 was written, but the situation has since been remedied both for cohort 
(Breslow, 1984b) and case-control studies (Robins et al., 1986b). Because of the 
skewness of the distribution of $MH it is more appropriately applied on the log scale. 
Using the fact that I),, - V =  Cj  (Rj - VSj)/Cj Sj, we have the asymptotic 

C:= Var (Rj - vS,) 
Var ($,HI = {C&l E(Sj)}2 

, 

and thus that the estimated variance of BMH = of the log relative risk 
parameter p = log(V) is 

Equations (3.16) and (3.17) are symmetric in the sense that interchanging the role of 
exposed and unexposed subcohorts has the effect of transforming $J,, into I/$,, and 
BMH into -BMH, but leaves the estimate of Var (BMH) = Var (-BMH) unchanged. 
Equation (3.17) applies only to Poisson distributed data as collected in a cohort study. 
The recommended Mantel-Haenszel variance estimate for case-control studies (Robins 
et al., 1986b) is more complicated. 

One important use of any variance -estimate is to set approximate confidence 
intervals on the estimated parameter. Using the interval BMH k ZaR{.Var (BMH)}1f2 for 
p, we have 

VL = 4 MHexp {-Za/2(Var BMH) 'I2} 

and 
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where Var fi,, is given by (3.17). Alternatively, we could solve iteratively the 
equations 

and 

which are based on the notion that {02 - E(02; V)/{Var (0,; q!~))~" has an approxi- 
mate unit normal distribution. These equations are the analogues of equation (4.27) in 
Volume 1. 

Example 3.11 
In order to estimate the relative risk associated with 15 or more years moderate or heavy exposure to 

arsenic among men first employed prior to 1925 in the Montana study, we abstracted 13 2 x 2 tables from 
Appendix V giving deaths and person-years for exposure levels 1 and 4. These are shown in Table 3.14. 
While for most ages, rates are higher in the heavily exposed group, the effect is concentrated particularly in 
the earlier calendar periods among men aged 50-69. Overall, there are 34 deaths in the higher exposure 
category, whereas 15.36 would be expected under the null hypothesis that the death rates for the two 
exposure levels were equal within each of the 13 strata. Since the null variance is 12.42, the summary test 
statistic (3.14) is x = (34 - 1 5 . 3 6 ) / m 2  = 5.29 (p  <0.0001). The estimate , = log (G,,) is 1.144 = 
log (3.138) and has a standard error calculated according to (3.17) of fl Var (DM,) = 0.2239. These values are 
quite close to those of the maximum likelihood estimate (MLE) pML= 1.126 and its standard error 
SE(~,,) = 0.2238 that were obtained as a by-product of fitting the corresponding model. Approximate 
confidence limits based on (3.18) are (2.02,4.87), while those obtained by solving equations (3.19) are 
(1.94,4.65). Mantel-Haenszel estimates of relative risk for each of the other exposure categories are shown 
in Table 3.11. 

(e) Testing for heterogeneity of relative risk (effect modijication) 

A fundamental assumption underlying the use of the Mantel-Haenszel or other 
estimators of relative risk is that the ratio of disease rates between the two exposure 
categories is constant over the various age groups, calendar years, or other groupings 
used for stratification of the sample. If there are substantial discrepancies or trends in 
the disease rate ratios, use of a summary relative risk measure is generally not 
advisable. Instead, one wants to describe how the effects of exposure as measured by 
relative risk are modified by age or year. Simple test statistics are available to evaluate 
this assumption by comparing the observed numbers of deaths among the exposed and 
unexposed in each stratum with expected numbers calculated using the summary 
estimate of relative risk. These are closely related to the statistics developed to test for 
differences between the odds ratios in a series of 2 x 2 tables formed from case-control 
data (equations 4.30 and 4.31 in Volume 1). 

Setting 2, = $nJ2/(nJl + $n12), we denote by dJ2= DJkJ, the expected or fitted 
number of deaths among the exposed and by dJ, = DJ(l - kJ), the number among the 
unexposed. The maximum likelihood estimator should be used in these calculations, in 
which case the total number of exposed deaths and the total fitted numbers will agree 
(equation (3.15)). However, the MH estimator is often sufficiently close to the NILE 
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Table 3.14 Series of 2 x 2 tables used in example 3.11. Low exposure ( - ) means less 
than 1 year of heavy or moderate arsenic exposure; high exposure ( + )  means 15+ 
years 

Age (years) Calendar period 

Exposure - f - + 

w 0.00 - 

Exposure - + - + 
50-59 d l ;  

n 

w 9.0 6.3 

Exposure - + - + 

w 14.0 3.8 

Exposure - + - + 
70-79 d l ;  

d = observed deaths; d = fitted deaths under ML estimate of common rate ratio; n = person-years denominator; 
6 = rate ratio in each table 

that fitted values based on it yield nearly identical results. Moreover, if 0, = Cj dj2 and 
Cj & based on MH differ, say by more than 1%, a 'one-step' correction of fiMH 
towards the MLE is available as 

Fitted values djl and dj2 determined from the corrected MH estimator qc = exp (8,) 
should be adequate for use in what follows if the MLE itself is not available. 

To test for a general difference among the rate ratios in the J strata, we compare the 
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observed and fitted values using the standard chi-square statistic 

which has J - 1 degrees of freedom. A test for a trend in the stratum-specific ratios 
with quantitative variables z,, representing, for example, the age level in stratum j, is 
accomplished using the statistic 

This is referred to tables of chi-square on one degree of freedom. If the zj are equally 
spaced, the numerator may be reduced in absolute value before squaring by half the 
distance between adjacent z values in order to correct for the discontinuity of the 
actual distribution. 

Example 3.11 (cont) 
Table 3.14 also presents fitted values of 4, and 4, for the respiratory cancer deaths determined by 

inserting the MLE GML = exp (1.126) = 3.083 in the expressions ail = DjnIi/(nli + GMLn2,) and di2 = 
~,G~,n,,/(n, + GMLn2,), respectively. The summary chi-square statistic (3.21) comparing observed and 
fitted values yields Xf2 = 12.9 (p  = 0.37), with the largest contribution 

coming from the 60-69-year age group in calendar period 1938-1949. Thus, in spite of the wide range of rate 
ratios for individual strata observed in this example, the variation is well within the limits expected under the 
hypothesis that the true ratio is constant across strata. 

Example 3.12 
Table 3.15 presents data on coronary deaths from the British doctors study (Doll & Hill, 1966) that have 

been used by Rothman and Boice (1979) and Breslow (1984b) to illustrate methods of cohort analysis. From 
(3.16) we find a summary relative risk estimate of = 1.4247. The fitted frequencies determined from it 

Table 3.15 Deaths from coronary disease among British male doctorsa 

Age group No. of person-years No. of observed deaths No. of expected deathsb Rate Rate 
(years) - ratio difference 

Non- Smokers Non- Smokers Non- Smokers per 100 000 
smokers smokers smokers person- 

years 

i 31 "iz: ~ $ 1  ~ $ 2  4 1  4 2  

Totals 39220 142247 101 630 101.00 630.00 1.72 185.4 

a Data from Doll and Hill (1966) as quoted by Rothman and Boice (1979) 
Estimated by maximum likelihood under the hypothesis of a common rate ratio 
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total C j  a,, = 629.9487, which agrees very closely with the observed total C j  d,, = 630. Thus, we know that 
the MH and MLE estimates are already almost equal, and a correction to the MH estimate would not 
normally be needed in such circumstances. Nevertheless, in order to illustrate the use of equation (3.20), we 
further calculate (using fitted values based on GMH) C j  d l , d j 2 / ~ ,  = 88.7729 and thus find 

which agrees with b,, to the number of decimal places shown. 
The sixth and seventh columns of Table 3.15 show the final fitted values d,, and d,, based on 

$,,= exp (0.3545) = 1.426. Inserting these in equations (3.21) and (3.22), and using zj = j to examine the 
trend with age, we obtain heterogeneity and (corrected) trend statistics of Xi = 11.1 and X; = 10.0 on four 
and one degrees of freedom, respectively. Thus, most of the heterogeneity in relative risk is explained by the 
linear decrease with age. Rothman and Boice (1979) note that these data are more consistent with an 
additive effect model than with a multiplicative one. In $4.4 we show that an even better fit is obtained using 
a square-root function to relate age and smoking effects. 

In this example, the standard error of OM, estimated from the square root of (3.17) is 0.1073, almost 
identical with SE(P,,)=O.IO~~. This illustrates once again the generally high efficiency of the MH 
estimator. However, in other applications the discrepancy may be found to be greater. 

(f) Extensions to K > 2 exposure classes 

In 03.4, we described the use of externally standardized mortality ratios to evaluate 
the relative risk of disease associated with each of K exposure categories, for example, 
the K = 4 levels of duration of heavy/moderate exposure to arsenic in both cohorts of 
the Montana study. A similar approach is taken with the methods of this section. First, 
Mantel-Haenszel estimates are computed for each of the k = 2, . . . , K exposure 
categories relative to baseline. These may be tested for significance individually using 
the summary chi-square (3.14). The stability of the relative risk estimates from one 
stratum to another is evaluated using the methods just presented. 

In order-to test the global null hypothesis that death rates for none of the K exposure 
classes differ, we require a multivariate extension of (3.14). As in 54.5 of Volume 1, 
this follows from consideration of the joint distribution, under the null hypothesis, of 
the deaths dj = (djl, . . . , djK) in each stratum. Using the Poisson sampling model, the 
null distribution of dj conditional on the total number of deaths I)i in stratum j is easily 
shown to be multinomial, with a covariance matrix the (k, l )  element of which 
(1 s k, l s K) is 

Under the null hypothesis, the summary vector 0 = (01, . . . , OK)  has expectation 
E = (El, . . . , EK) (see equation 3.13) and covariance matrix V = Cj y. The global test 
for equality of death rates compares 0 and E using the criterion 

x $ - ~  = ( 0  - E)~v-(o - E), (3.24) 

where V- denotes a generalized inverse of V (Rao, 1965) and denotes a matrix 
transpose. In practice, this is calculated by. restricting 0 and E t o  the first K - 1 
components and replacing V by the corresponding (K - 1) x (K - 1) dimensional 
covariance matrix. For. the special case K = 2, the test is obtained either as 
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(0 ,  - E l ) 2 / ~ l  or (02  - E2)a2/V2 where Vl = Var (0,) and V2 = Var (0,). It thus reduces 
to the square of the two-group statistic (3.14), without correction for continuity. 

The K group statistic based on indirect standardization, namely (3.11) with the 
internal fitted values Ek replacing the adjusted external expected, does not require 
calculation of the variances. It may be recognized as the analogue of the conservative 
test (equation 4.42 in Volume 1) proposed for case-control data. It always yields 
smaller values than (3.24), and the degree of conservatism depends on the extent to 
which the stratum variables confound the disease-exposure relationship (Armitage, 
1966; Peto, R. & Pike, 1973). 

The test for a trend in relative risk with increasing exposure is obtained from the 
regression of the observed - expected differences on the dose levels x ,  namely 
Ck xk(Ok - Ek). This has a variance of (xTvx). The test statistic is written 

where ejk = njkDj/8 denotes the expected value in the component 2 x K table. This is 
the analogue of equation (4.43) in Volume 1 for cohort data. Once again, the 
corresponding statistic based on internal standardization (equation (3.12) using Ek) 
provides a conservative approximation. 

Example 3.13 
The last lines in each part of Table 3.11 show the values of the heterogeneity and trend statistics (3.24) and 

(3.25) obtained with the data in Appendix V. These are slightly greater than the approximating statistics 
(3.11) and (3.12) calculated from the observed and expected values only, without consideration of the 
variances. While this is not atypical of what one observes in practice, more serious discrepancies must be 
anticipated when there is strong confounding. 

(g) Conservatism of indirect standardization 

The impression one might get from our analysis of the Montana smelter workers 
data, namely, that indirect standardization always yields results close to those obtained 
with the Mantel-Haenszel methodology, is of course mistaken. The degree of 
conservatism depends on the degree of statistical confounding between the stratum 
variables and the exposures. In situations in which the confounding is marked, the 
conservatism may be also, as the following hypothetical data make clear. 

Consider two strata in which the relative risk of exposure is 2, but the pooled risk is 
considerably less: 

Stratum I Stratum I1 Combined sample 
Unexposed Exposed Unexposed Exposed Unexposed Exposed 

Cases 

Relative risk ($) 2.0 
E2 = E(02) 27.273 
EI = E(01) 2.727 

= Var (0,) 2.479 
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The chi-square test for 111 = 1 based on internal standardization calculated without 
continuity correction is 

whereas the chi-square test that uses the actual variances from each component table is 

Due to the moderately strong confounding, .the approximate statistic is substantially 
smaller and yields a nonsignificant result. Similarly, the relative risk estimate based 
only on observed and expected values, namely (02E1)/(01E2) = (30 x 35.844)/(30 x 
24.156) = 1.48, is less than that of the estimate $,, = 2.0. 

3.7 Proportional mortality and dose-response analyses 

Occasionally one is called upon to conduct a dose-response analysis using only the 
deaths observed in a defined cohort, without consideration of the corresponding 
person-years denominators. These may be the only data available. Or, complete 
exposure histories may have been reconstructed first for dead subjects, for example, 
and one wants to make an initial evaluation of the probable magnitude of the relative 
risks before proceeding with the collection of data on those persons who are still alive. 
The available information consists only of numbers of deaths classified by age at death 
and other stratification factors, by level of exposure, and by cause of death. Once 
again, we denote by djk the number of deaths in stratum j and exposure group k for the 
cause of interest, by tjk the total deaths from all causes in that stratum and exposure 
category, and by Dj = C k  djk and 7; = C k  tjk the subtotals cumulated over categories. 
We may also have available a quantitative variable x giving the dose level xk in 
exposure class k. 

~he 'ob jec t  of the analysis is to determine whether the proportion of deaths due to 
the cause of interest increases systematically with increasing levels of exposure, while 
adjusting for age and other potentially confounding factors by stratification into J 
strata. The major weakness of the approach is the fact that some of the other causes of 
death may also be affected by the exposure, thus obscuring the association of interest 
and hindering precise quantitative estimation of its magnitude. If one is reasonably 
confident that the other causes of death included in the analysis are not related to the 
exposure, at least not after accounting for the stratification factors, then the data are 
best viewed as arising from a type of case-control study in which the deaths from other 
causes are assumed to represent an unbiased sample (vis-d-vis the exposures) of the 
population at risk within each stratum. This means that the most appropriate analysis 
of proportional mortality data is to treat them as arising from a case-control study in 
which the controls died from other causes (Miettinen & Wang, 1981). 

In practice, it is useful to exclude from the control sample deaths from those causes 
that are already known to be related to the exposures. This enhances confidence in the 
critical assumption that underlies the methodology, namely that the 'controls' are 
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representative of the population at risk. If one is uncertain about its validity - and this 
is usually the case - the inferences drawn must necessarily be more tentative than those 
from an actual case-control study of incident cases in which random sampling methods 
have been used to select controls from the population in an unbiased fashion. 

Although case-control methodology is preferred for the analysis of proportional 
mortality data, it has been common practice in the past to apply techniques of indirect 
standardization analogous to those presented in 83.4 and 3.5. One first computes 
expected numbers of deaths eik from the cause of interest in the (j, k) 
stratum/exposure cell under the hypothesis that exposure has had no effect on the 
death rates. In symbols, 

These values are cumulated to give Ek = Ci eik as the total number expected at level k 
after adjustment. It would be tempting to insert such Ek into equations (3.8), (3.11) 
and (3.12) in order to estimate and make tests on the relative risk. If the disease is 
common, however, such ad-hoc methods may lead to results that are at considerable 
variance from those obtained using the proper case-control methods. The main 
difficulty is the fact that the disease of interest is making a contribution to the totals tik 
and ?;. used to calculate the expected numbers, so that these are closer to the observed 
numbers than they are for the analogous cohort data. Even under the proportionality 
assumption that justified dose-response analysis of SMRk, the equivalent proportional 
mortality analysis may not be valid. 

Example 3.14 
The sixth column of Appendix V shows the total numbers of deaths among the Montana workers classified 

by age, calendar period, date of employment and exposure duration. These were used in a case-control 
dose-response analysis according to the methods presented in Chapter 4 of Volume 1. There were 18 
age x calendar period strata and four exposure levels for the pre-1925 cohort, and 16 strata and four 
exposure levels for the post-1925 cohort. Table 3.16 presents the results. The Mantel-Haenszel estimates of 
relative risk are in reasonable agreement with those found from the entire set of cohort data (Table 3.11), 
except for the highest exposure duration category in the early cohort (2.62 versus 3.14). Here, the 
proportional mortality analysis yields a substantially lower estimate of relative risk, suggesting that causes of 
death other than respiratory cancer may be affected by lengthy exposures to arsenic. The Mantel-Haenszel 
estimates are in good agreement with those obtained by (unconditional) maximum likelihood according to 
the methods presented in Chapter 6 of Volume 1,  namely, the fitting of linear logistic models to the binomial 
proportions of cause-specific deaths divided by total deaths. The statistics (4.41) and (4.43) in Volume 1 for 
testing for heterogeneity and trend in the relative risks are substantially less than the corresponding statistics 
shown in the sixth row of Table 3.11 for the full cohort data. This is not surprising in view of the reduced 
value for the relative risk estimate for the highest exposure category. 

Also shown in Table 3.16 for each subcohort are the expected numbers of respiratory deaths obtained by 
multipliing the total deaths in each age-stratum-exposure cell by the proportion of respiratory deaths in that 
stratum as shown in equation (3.26), and then summing across strata. When these are inserted in equation 
(3.8) to estimate the 'relative risk' for each exposure level, the results are considerably more conservative 
than were the results based on indirect standardization using the complete set of cohort data (Table 3.11). 
For example, the estimate of relative risk from proportional mortality data for the 15+ years exposure 
duration category in the pre-1925 cohort is $ = 2.38 based on observed/expected values versus q = 2.62 for 
Mantel-Haenszel. The corresponding figures from cohort data were 3.09 versus 3.14. Similarly, whereas the 
test statistics (3.11) and (3.12) yielded only slightly conservative results when used with internally 
standardized expected numbers based on the person-years denominators, when used with the proportional 
expected'values from equation (3.26) that depend only on the proportional mortality data, the results are 
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Table 3.16 Dose-response analysis of respiratory cancer deaths among 
Montana smelter workers, based on proportional mortality 

Cumulative years of moderatelheavy arsenic exposure 

0-0.9 1.0-4.9 5.0-14.9 15+ Total 

Workers employed prior to 1925 
Observed deaths 51 17 13 34 115 
Total, deaths 636 100 93 195 1024 

(All causes) 
Expected deaths 72.47 11.84 10.41 20.29 115.00 

(Internal adjust- 
ment for age and 
calendar year) 

Relative risk (using ratios 1.0 2.04 1.77 2.38 
of Observed/Expected) 

Relative risk (Mantel- 1 .O 2.30 2.12 2.62 
Haenszel) 

Relative risk (Maximum 1 .O 2.32 1.98 2.82 
likelihood) 

Approximate test for homogeneity, X $  = 18.5; test for trend, x': = 16.6 
(using observed and expected values in equations (3.1 1) and (3.12)) 

Case-control test for homogeneity, X $  = 21.6; test for trend, X: = 19.4 
(equations 4.41 and 4.43 from Volume 1) 

Workers employed 1925 or later 
Observed deaths 100 38 15 8 161 
Total deaths 1389 274 143 68 1874 

(All causes) 
Expected deaths 118.47 24.47 11.83 6.25 161.00 

(Internal adjustment 
for age and calendar 
year) 

Relative risk (using ratios 1.0 1.84 1.50 1.52 
of Observed/Expected) 

Relative risk (Mantel- 1.0 2.06 1.54 1.58 
Haenszel) 

Relative risk (Maximum 1.0 2.02 1.57 1.61 
likelihood) 

Approximate test for homogeneity, X $  = 11.7; test for trend, x': = 6.3 
(using observed and expected values in equations (3.1 1) and (3.12)) 

Case-control test for homogeneity, X $  = 13.2; test for trend, X: = 7.0 
(equations 4.41 and 4.43 from Volume 1) 

noticeably different from those obtained with proper case-control techniques. This illustrates the basic point 
that indirect standardization techniques should not be used in the context of proportional mortality unless 
one is dealing with a very rare disease. Whereas they may or may not yield conservative results with cohort 
data depending on the degree of statistical confounding, they are bound to produce conservative results with 
proportional mortality (case-control) data. 

Nothing has yet been. said about the possibility of incorporating information from the 
external standard population into the dose-response analysis of proportional mortality 
data. The reason is that the elementary methods presented in $3.4 for cohort studies 
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have no suitable analogue when death records are the only data available, nor do the 
indirect standardization techniques of $3.5, as shown in the preceding example. 
Suppose we were to calculate expected numbers of deaths for each exposure category 
using the formula E i  = C j  &I;, where p; denotes the standard proportion of deaths in 
stratum j due to the cause of interest. Even under the assumption of proportionality, in 
which the stratum-specific mortality rates for both cause-specific and general deaths in 
each exposure category are constant multiples of the stratum-specific standard rates, 
inserting these expected numbers into equations (3.8), (3.11) and (3.12) may yield 
badly biased estimates and tests if more than a few percent of total deaths are due to 
the cause of interest. Although it is possible to use the external standard proportions 
by incorporating them into an appropriate model, none of the standard estimates or 
tests based on the model have simple closed form expressions. Therefore, we defer 
further discussion of this approach to proportional mortality analysis until the next 
chapter. 
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CHAPTER 4 

FITTING MODELS TO GROUPED DATA 

A major goal of the statistical procedures considered in the preceding two chapters 
was to condense the information in a large set of incidence or mortality rates into a few 
summary measures so as to estimate the effects that a risk factor has on the rates. A 
secondary goal was to evaluate the statistical significance of the effect estimates at 
different levels of exposure in order to rule out the possibility that the observed 
differences in rates were due simply to the play of chance. Some attention was devoted 
also to determining whether the effect measures used (relative risks) were reasonable 
summary measures in the sense of remaining relatively constant from one age stratum 
to the next, or whether, instead, it was necessary to describe how the effect was 
modified by age or other variables used for stratification. 

Role of statistical modelling 

Estimation of risk factor effects and tests of hypotheses about them are also the goals 
of statistical modelling. The statistician constructs a probability model that explicitly 
recognizes the role of chance mechanisms in producing some of the variation in the 
rates. Observed rates are regarded as just one of many possible realizations of an 
underlying random process. Parameters in the model describe the systematic effects of 
.the exposures of interest, and estimates of those parameters, obtained during the 
process of fitting the model to the data, serve as summary statistics analogous to the 
SMR or Mantel-Haenszel estimates of relative risk. Evaluation of dose-response 
trends is conducted in terms of tests for the significance of regression coefficients for 
variables representing quantitative levels of exposure. Additional parameters may be 
incorporated in order to model variations of the exposure effects with age, calendar 
year or other stratum variables. 

Statistical modelling has several advantages over standardization and related 
techniques. It facilitates consideration of .the simultaneous effects of several different 
exposure variables on risk. Applied to the study of nasal sinus and lung cancers in 
Welsh nickel workers, for example, the effects of period of employment, age at 
employment and years since employment may be estimated in a single model equation 
(see $4.3) rather than in separate stratified analyses (Tables 3.12 and 3.13). If 
quantitative variables are available that specify the timing and degree of exposure, then 
a more economical description of the data often may be given in terms of 
dose-time-response relationships rather than by making separate estimates of risk for 
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each exposure category. Such quantitative expression of the results facilitates the 
interpolation of risk estimates for intermediate levels of exposure. It is essential for 
extrapolation beyond the range of the available data, although this is usually a 
hazardous undertaking. Examination of the goodness-of-fit of the model to the 
observed rates alerts the investigator to situations in which the simple model 
description is inadequate or in which important features of the data are being 
overlooked. Estimates of relative risk obtained by model fitting generally have greater 
numerical stability than those computed from standardized rates. 

There are, of course, some apparent drawbacks to model fitting that need to be 
considered along with the advantages. Perhaps the greatest problem lies in the 
parametric specification of the model. While explicit theories about the nature of the 
disease process are sometimes available to suggest models with a particular mathemati- 
cal form (see Chapter 6), more often the models used in statistical data analysis are 
selected on the basis of their flexibility and because the associated fitting procedures 
are well understood and convenient. Alternative models may have quite different 
epidemiological interpretations. Examining the relative goodness-of-fit of two distinct 
model structures enables one to judge whether the evidence favours one interpretation 
over another, or whether they are both more or less equally in agreement with the 
observed facts. Unfortunately, epidemiological data are rarely extensive enough to be 
used to discriminate clearly between closely related models, and some uncertainty and 
arbitrariness in the process of model selection is to be anticipated. Nevertheless the 
very act of thinking about the possible biological mechanisms that could have produced 
the observations under study can be beneficial. Consideration of possible model 
structures is not strictly necessary when applying the elementary techniques, but even 
these implicitly assume some regularity in the basic data and, as we have seen, may 
yield misleading answers if it is absent. 

Scope of Chapter 4 

This chapter develops methods for the analysis of grouped cohort data that are based 
on maximum likelihood estimation in Poisson models for the underlying disease rates. 
Additive and multiplicative models are introduced in 04.1 as a means of summarizing 
the basic structure in a two-dimensional table of rates. It is again shown that the ratio 
of two CMFs appropriately summarizes age-specific rate ratios under the multiplicative 
model, but that the ratio of two SMRs does not unless additional assumptions are met. 
The basic process of model fitting is illustrated by an analysis of Icelandic breast cancer 
rates classified by age and birth cohort. 

Section 4.2 contains more technical material that justifies the use of the Poisson 
model as the basis for maximum likelihood analysis of grouped cohort data. It may be 
omitted on a first reading. 

Methods of fitting multiplicative models to grouped cohort data consisting of a 
multidimensional cross-classification of cases (or deaths) and person-years de- 
nominators are developed in 04.3. The computer program GLIM is shown to offer 
particularly convenient features for fitting Poisson regression models. Quantities 
available from the GLIM fits are easily converted into 'deletion diagnostics7 that aid in 
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assessing the stability of the fitted model under perturbations of the basic data. These 
techniques are by no means limited to the analysis of relative risk: 04.4 shows that 
GLIM may be used also to fit a class of generalized linear models that range from 
additive to multiplicative. Methods for selecting the model equation that best describes 
the structure in the data are illustrated by application to a rather simple problem 
involving coronary deaths among smoking and nonsmoking British doctors. 

The Montana smelter workers data from Appendix V are reanalysed in 004.5, 4.6 
and 4.7 in order to demonstrate the close connection between multiplicative models 
and the elementary techniques of standardization and Mantel-Haenszel estimation 
introduced in 003.4, 3.6 and 3.7. Section 4.5 considers internal estimation of 
background rates from study data, whereas 04.6 develops analogous models that 
incorporate external standard rates. Proportional mortality analyses based on fitting of 
logistic regression models to case-'control' data, both with and without reference to 
external standard proportions, are developed in 84.7. 

More comprehensive analyses of the Montana data, using original records not 
published here, appear in 004.8 and 5.5. Some additional models that do not fall 
strictly under the rubric of the generalized linear model are considered in the last two 
sections of the chapter. Foremost among these is the additive relative risk model 
whereby different exposures act multiplicatively on the background rates, but combine 
additively in determining the relative risk. This is illustrated in 04.9 by application to 
data on lung cancer deaths among British doctors. GLIM macros are presented for 
fitting a general class of relative risk models which includes both the additive and 
multiplicative as special cases. In 04.10, grouped data from the Welsh nickel refiners 
study are used to illustrate the fitting of a model in which the excess risk of lung cancer 
(over background based on national rates) is expressed as a mutliplicative combination 
of exposure effects. These results are contrasted with those of a more conventional 
multivariate analysis of the SMR under the multiplicative model. 

Some familiarity with the principles of likelihood inference and linear models is 
assumed. Readers without such background are referred to 006.1 and 6.2 of Volume 1, 
and the references contained therein, for an appropriate introduction. 

4.1 Additive and multiplicative models for rates 

Most of the essential concepts involved in statistical modelling can be introduced by 
considering the simple example of a two-dimensional table of rates. The data layout 
(Table 3.4) consists of a table with J rows (j = 1, . . . , J )  and K columns (k = 

1, . . . , K). Within the cell formed by the intersection of the jth row and kth column, 
one records the number of incident cases or deaths djk and the person-years 
denominators njk. For concreteness, we may think of j as indexing J age intervals and k 
as representing one of K exposure categories. 

The observed rate in the (j, k)th cell may be written ijk = d,k/n,k. This is considered 
as an estimate of a true rate Ajk that could be known exactly only if an infinite amount 
of observation time were available. In order to account for sampling variability, the djk 
are regarded as independent Poisson variables with means and variances E(djk) = 
Var (djk) = Aiknjk. The denominators njk are assumed to be fixed. The rationale for this 
Poisson assumption is discussed in 004.2 and 5.2. 
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The goal of the statistical analysis is to uncover the basic structure in the underlying 
rates Ajk, and, in particular, to try to disentangle the separate effects of age and 
exposure. This is accomplished by introducing one set of parameters or summary 
indices which describe the age effects and another set for the exposures. However, such 
a simple description makes sense only if the age-specific rates display a degree of 
consistency such that, within defined limits of statistical variation, the relative position 
of each exposure group remains constant over the J age levels (see Chapter 2, Volume 
1). If one exposure group has higher death rates among young persons, but lower rates 
among the elderly, use of a single summary rate (or the analogous parameter in a 
statistical model) to represent the exposure effect will obscure the fact that the effect 
depends on age. 

(a) The model equations 

Various possible structures for the rates satisfy the requirement of consistency. In 
particular, it holds if the effect of exposure at level k is to add a constant amount Pk to 
the age-specific rates 4, for individuals in the baseline or nonexposed category (k = 1). 
The model equation is 

where a;. = Ail and pk (PI = 0) are parameters to be estimated from the data. 
If additivity does not hold on the original scale of measurement, it may hold for 

some transformation of the rates. The log transform 

log Ajk = a, + p, 
yields the multiplicative model 

where now q = log 8, = log 5, and pk = log qk. In this case, qk represents the relative 
risk (rate ratio) of disease for exposure at level k relative to a baseline at level 1 
(9% = 1). 

The excess (additive) and relative (multiplicative) risk models are the two most 
commonly used to describe the relationship between the effects of exposure and the 
effects of age and other 'nuisance' factors that may account for background or 
spontaneous cases. Both have been used to describe different aspects of radiation 
carcinogenesis in human populations (Committee on the Biological Effects of Ionizing 
Radiation, 1980). The upper two panels of Figure 4.1 contrast the age-incidence curves 
that result from the two models when a given dose of radiation produces a constant 
effect that persists for life after a latent period. Due to the sharp rise in background 
incidence with age, relative risk estimates derived from current data generally predict a 
greater lifetime radiation risk than do estimates of additive effect. The two lower 
panels of Figure 4.1 illustrate the effect of age at irradiation on risk for a multiplicative 
model in which the radiation effect itself is concentrated in the period from 1, to l2 
years after exposure. However, this complication of a limitation of the period of effect 
is not considered further in this section. 
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Fig. 4.1 Radiation-induced cancer effect superimposed on spontaneous cancer .in- 
cidence by age. Illustrations of various possibilities; X,, age at exposure; 1, 
minimal latent period. From Committee on the Biological Effects of Ionizing 
Radiation (1980) 
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Considerable attention has been given in recent years to the problems of dis- 
criminating between additive and multiplicative models using epidemiological data 
(Gardner & Munford, 1980; Thomas, D.C., 1981; Walker & Rothman, 1982; Breslow 
& Storer, 1985). One possible approach is presented in $4.5. Unless the data are quite 
extensive and the effect of exposure pronounced, however, random sampling errors 
may make such discriminations difficult. Furthermore, errors of misclassification of the 
exposure variable may operate to distort the true relationship (Tzonou et al., 1986). In 
view of such uncertainties, the choice of model is legitimately based as much on 
a-priori considerations as it is on goodness-of-fit tests, unless of course these show one 
or the other model to be markedly superior. As with the report of the Committee on 
the Biological Effects of Ionizing Radiation, some authors follow the prudent course of 
examining and presenting their data using several alternative model assumptions. 
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(b) Biological basis for model selection 

Sections 2.4-2.7 of Volume 1 gave both empirical and logical reasons for the usually 
greater convenience in cancer epidemiology of measuring the effects of exposures in 
terms of the relative risk parameters of the multiplicative model rather than the excess 
risk parameters of the additive model. Incidence and death rates for cancers of 
epithelial tissue are known to rise rapidly with age, the age-incidence curves 
approximating a power function with exponent between four and five (Doll, 1971). 
When plotted on log paper for different exposure or population groups, the 
age-incidence curves are therefore roughly linear with a common slope but varying 
intercept (Fig. 2.2). This implies a multiplicative relationship. 

If the two dimensions of the table correspond to two different exposure factors, 
however, then various models for the disease process suggest that their individual 
effects on the age-specific .rates or on the lifetime risks may combine additively, 
multiplicatively or in some other fashion. Models based on the multistage theory of 
carcinogenesis lead to approximately additive structures if the two risk factors affect 
the same stage of the process and to multiplicative structures if two distinct stages are 
affected (Lee, 1975; Siemiatycki & Thomas, 1981; Hamilton, 1982). A detailed 
discussion of quantitative theories of carcinogenesis and how they may be used to 
suggest appropriate dose-time-response relationships involving one or more agents is 
given in Chapter 6. Under Rothman's (1976) component-sufficient cause paradigm of 
disease causation, which is perhaps of greater relevance to other areas of epidemiol- 
ogy, 'independent' factors or those which contribute to different disease pathways have 
effects that combine in a nearly additive fashion, whereas the effects of 'complemen- 
tary' factors or those that contribute different parts to the same pathway combine in a 
manner that is close to multiplicative (Koopman, 1982). 

(c) Standardization and multiplicative models 

The CMF and the SMR (see Chapter 2) were originally developed from a general, 
intuitive perspective, in the absence of any formal assumption about the structure that 
might be present in the underlying age-specific disease rates. Nevertheless, con- 
siderable insight into the properties of such statistical measures is gained by 
investigating their performance under well-defined and plausible models for the basic 
data. Here, we compare the performance of the CMF and SMR in the multiplicative 
environment and develop an interesting relationship between the iterative fitting of 
multiplicative models and the calculation of the indirectly standardized SMR. Similar 
investigations have been undertaken by Freeman and Holford (1980), Anderson et al. 
(1980j and Hoem (1987). 

Suppose, for simplicity, that there are only two exposures categories (k = 1 or 2) and 
denote by y = njo/No and A; = dio/nio the standard weights and rates that enter into the 
calculation of the summary measures. According to (4.2) the ratio of age-specific rates 
for the two categories is equal to 9!J2/9!J1, or just 9!J2 if 99, = 1 as is generally assumed, 
regardless of the age interval. Thus, the ratio of the two corresponding summary 
measures should tend towards 9!J2 in large samples if the measures are to reflect 
accurately the basic regularity in the rates. An easy calculation shows this is indeed 
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true for direct standardization: 

For the ratio of two SMRs, however, we have 

SMR2 + Cf= njiAj2/Cf=l ATnj2 C;=, nj2Oj/Cf=, A;nj2 
SMRI Cf=l njl Aj1/C:=, A;nj, 

= '4'2 x J * -  C f = ,  n , le j /Cj=l  5 nil 

The second term in this expression generally does not equal 1 unless we also have 
Oj = const x ;li* or else nj2 = const x nil; that is, unless the age-specific rates for 
exposure categories 1 and 2 are both proportional to the external standard rates, in 
addition to being proportional to each other, or else the two age distributions are 
identical. The bias in the ratio of SMRs can be severe if these conditions are grossly 
violated, as Table 2.13 makes clear. 

The condition of proportionality with the external standard automatically holds for 
the multiplicative model if one takes for the 'standard' either one of the two sets of 
age-specific rates that are being compared. If the first exposure group (k = 1) is taken 
as standard for computation of the CMF, and the second group (k = 2) as standard for 
the SMR, then the ratios of CMFs and SMRs are identical (Anderson et al.,  1980, 
Section 7A.4). Using the pool of the two comparison groups as an internal standard, 
however, generally does not satisfy the proportionality condition, and the ratio of 
SMRs computed on this basis does not estimate the ratio of age-specific rates. 
Nevertheless, use of the pooled population seems to avoid some of the more severe 
biases that can arise with a completely external standard population. Moreover, the 
SMR calculated with the pooled groups as standard arises naturally at the first cycle of 
iteration in one of the numerical procedures for fitting the multiplicative model. These 
features are illustrated in a cohort analysis of Icelandic breast cancer incidence rates. 

( d )  Effects of birth cohort on breast cancer incidence in Iceland 

Table 4.1 shows the numbers of female breast cancer cases diagnosed in Iceland 
during 1910-1971 according to five-year interval and decade of birth (Bjarnason et al.,  
1974). These data can be considered as arising from a large-scale retrospective cohort 
study that was made possible by the existence of good records and the fact that all 
diagnoses in a nearly closed population were made by a small number of pathologists. 
Also shown are the person-years denominators as estimated from census data and the 
expected number of cases after fitting of the multiplicative model (4.2). Note that the 
cells in the lower left- and upper right-hand corners of the table are empty, a 
consequence of the limited period of case ascertainment. This means that the age 
distributions of the different birth cohorts are extremely different, and, since the cohort 
effects are strong also, the age-specific rates for the pooled population will not be 
proportional to the rates for any particular cohort. Thus, we should not expect that 
SMRs computed using the pooled population as standard will provide very accurate 
estimates of the relative risk parameters. 



FllTlNG MODELS TO GROUPED DATA 

Table 4.1 Observed (0) and expected (El numbers of female breast cancer cases in  Iceland during 
1910-1971 by age and year of birth, with approximate person-years (P-Y) at riska 

Age group Year of birth 
(years) 

1840- 1850- 1860- 1870- 1880- 1890- 1900- 1910- 1920- 1930- 1940- 
1849 1859 1869 1879 1889 1899 1909 1919 1929 1939 1949 

- 

20-24 0 
E 
P-Y 

25-29 0 
E 
P-Y 

30-34 0 
E 
P-Y 

35-39 0 
E 
P-Y 

40-44 0 
E 
P-Y 

45-49 0 
E 
P-Y 

50-54 0 
E 
P-Y 

55-59 0 
E 
P-Y 

60-64 0 
E. 
P-Y 

65-69 0 
E 
P-Y 

70-74 0 
E 
P-Y 

75-79 0 
E 
P-Y 

80-84 0 
E 
P-Y 

- -- 

a From Breslow and Day (1975) 
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Methods of fitting the multiplicative model by maximum likelihood using the 
computer program GLIM (Baker & Nelder, 1978) are described below in a more 
general context. This program uses a modification of the Newton-Raphson algorithm 
to solve the nonlinear likelihood equations; standard errors of the parameter estimates 
arise as a by-product of these calculations. For the particular model (4.2), however, 
there is an alternative fitting algorithm, use of which provides greater insight into the 
relationship between model fitting and the technique of indirect standardization 
(Breslow & Day, 1975). The equations that determine the maximum likelihood 
solution may be written 

and 

q k  = ( k = l , .  . . , K), 
Cf=l ejnjk 

where Dj = Ck djk are the total deaths at age j and Ok = C, djk the total deaths at 
exposure level k (Table 3.4). Inserting initial values q(P) = 1 in the first equation leads 
to 8,") = D,/N,, the marginal death rate in the jth age group, as the initial estimate of 
8,. Here, N, = Ck njk denotes the total person-years in the jth group. Substituting 8,(11 
in the second equation gives an initial estimate for qk of = ok/Cj (njkDj/4). ~ h u s ,  
the first-cycle estimate of qk is simply the SMR for the kth exposure group, computed 
using the age-specific rates for the pooled exposure groups as the standard. Refine- 
ments to the initial estimate are obtained by sutstituting qil) in the first equation to 
obtain qL2), and continuing until convergence when both sets of equations are satisfied 
simultaneously. If and 8, denote the maximum likelihood estimates found at 
convergence, I), may be interpreted as an SMR using the estimated rates 8j as 
standard. 

Model (4.2) is over-parametrized in the sense that if a particular set of J + K 
numbers Oj and qk satisfy the model equation, then so do the sets a0, and ( l / a ) q k  for 
any positive a. Statisticians refer to such a situation, in which there are more free 
parameters than can be estimated from the data, as the problem of nonidentifiability. 
The usual means of solving the problem is to impose constraints on the parameters that 
are consistent wih a desired interpretation. For the usual choice 99, = 1, the remaining 
qk may be interpreted as relative risks using the first exposure category (k = 1) as 
baseline. The 8, then correspond to age-specific rates in that baseline category. Of 
course, the 8j are actually determined using the data for all the exposure groups, a fact 
that is especially apparent in this example since for the baseline 1840-1849 cohort 
data are available for only three age groups. 

Another possible resolution of the nonidentifiability problem (Mantel & Stark, 1968) 
is to choose the normalizing constant a in such a way that when the 8,, interpreted as 
adjusted age-specific rates, are applied to  the pooled population at risk in each age 
interval, the expected number of deaths is equal to the observed number. Thus, 
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Table 4.2 Results of fitting the multiplicative model to the data in Table 4.1 (10 iterations)" 

( a )  Adjusted SMR by cohort 
Year of birth 

1840- 1850- 1860- 1870- 1880- 1890- 1900- 1910- 1920- 1930- 1940- 

( b )  Adjusted age-specific incidence rates per 100 000 person- years 
Age (years) 

a From Breslow and Day (1975) 

where D+ = C Dj denotes total deaths. This ensures that the 8j will be roughly 
comparable in magnitude to the pooled rates 2, = Dj/N, determined from the marginal 
totals. 

Table 4.2 presents the parameter estimates 8j and Gk that arise from fitting model 
(4.2) under the constraint (4.5). Goodness-of-fit is evaluated by comparing the 
observed djk and fitted djk = 8j$kn,k numbers of cases in each cell, both of which are 
shown in Table 4.1. A summary of the goodness-of-fit is provided by the chi-square 
statistic 

Fig. 4.2 Crude (x) and fitted (a) age-specific incidence rates for female breast cancer 
in Iceland, 1911-1972. From Breslow and Day (1975) 
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in which the degrees of freedom equal the number of cells with non-zero denominators 
(n,, > 0), minus the number of independently estimated parameters. For our example, 
(4.6) yields x2 = 49.0 with 77 - 23 = 54 degrees of freedom ( p  = 0.67). It is important 
that the contributions to chi-square (djk - djk)2/% exceed the 95% critical value of 3.84 
for a squared normal deviate for only one cell: in the youngest age group in the 
1890-1899 cohort there were two cases observed versus only 0.42 expected. Thus, the 
fit appears remarkably good. 

The estimates 8, are plotted on a semilogarithmic scale in Figure 4.2 together with 
the marginal rates = DjlN,. It is clear that pooling several heterogeneous birth 
cohorts has overemphasized the change in slope of the age-incidence curve that occurs 
around the time of the menopause. This is because the marginal rates at older ages are 
based on earlier birth cohorts which had lower incidence, whereas the marginal rates at 
younger ages are based on recent cohorts with high incidence. The fitted values 8, give 
an impression of the shape of the age relationship for breast cancer that is more 
comparable to those seen in other populations (Moolgavkar et al., 1980). 

A similar disparity between the SMRks determined using the marginal rates as 
standard and the fitted parameters Gk representing birth cohorts effects is shown in 
Figure 4.3 (Hoem, 1987). Here, the expected numbers of cases for recent birth cohorts 
are too high since only marginal rates for young women are used in their calculation, 
whereas the expected numbers for the earliest cohorts use only the rates at the oldest 

Fig. 4.3 Comparison of indirect standardization and multiplicative model fitting in 
cohort analysis of female breast cancer in Iceland; 0, standardized mortality 
ratio; a, multiplicative parameter. From Hoem (1987) 

Year of birth 
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ages. The estimated effect for the 1940-1949 cohort should probably be ignored as it is 
based on only seven cases occurring at young ages. 

4.2 The Poisson assumption1 

The Poisson model is used throughout this monograph for purposes of making 
statistical inferences about rates. Specifically, the number of deaths d occurring in a 
particular age-time-exposure cell is assumed to take on the values x = 0, 1, 2, . . . with 
probabilities 

pr (d = x) = exp (-An)(An)"/x!, 

where A denotes the unknown rate and n is the person-years denominator. Further- 
more, the numbers of deaths occurring in different cells are regarded as statistically 
independent, even if the same individuals contribute person-years observation time to 
more than one of them. In this section, we explore the assumptions required for (4.7) 
to provide a reasonably accurate description of the statistical fluctuations in a collection 
of rates. Pocock et al. (1981) and Breslow (1984a) have developed some alternative 
models and techniques that may be used in cases in which the observed variation in 
rates is greater than that predicted by Poisson theory. 

(a) Exponential survival times 

Suppose, for simplicity, that there is a single study interval or cell to which I 
individuals (i = 1, 2, . . . , I )  contribute person-years observation times ti. Set 6, = 1 if 
the ith person dies from (or is diagnosed with) the disease of interest in that cell after 
observation for ti years; otherwise, 6, = 0. We further suppose (although this may be 
unrealistic in certain applications) that there is a fixed maximum time & for which the 
ith individual will be observed if death does not occur. Most frequently, & represents 
the limitation on the period of observation imposed by the person's entry in the middle 
of the study or his withdrawal from observation at its end (see Fig. 2.1). Thus, ti = & if 
6, = 0, in which case we say that the observation ti is censored on the right by T .  

Inferences are to be made about the death rate A, defined as the instantaneous 
probability A dt that someone dies in the infinitesimal interval (t, t + dt) of time, given 
that he was alive and under observation at its start. We assume that the rate A remains 
constant for the entire period that each individual is under observation. While 
obviously only an approximation to the true situation, in practice this means that the 
cell should be constructed to represent a reasonably short interval of age and/or 
calendar time and that the corresponding exposure category should be fairly homoge- 
neous. Thus, for example, thinking of duration of employment as a measure of 
exposure, a particular cell might refer to deaths and person-years that occurred 
between the ages of 55 and 59 during the years 1960-1964 for persons who had been 
employed for at least 25 and no more than 30 years. We also make the entirely 

'This section treats a specialized and rather technical topic. Since it presumes greater familiarity with 
probability theory and statistical inference than the other sections, it may be omitted at first reading. 
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plausible assumption that the death of one individual has no effect on the outcome for 
another, or in other words that the two outcomes are statistically independent. Under 
these conditions the exact distribution of the data (ti, 6,) for i = 1, . . . , I is that of a 
series of censored exponential survival times. 

The exponential distribution has a long history of use in the fields of biometrics, 
reliability' and industrial life testing (Little, 1952; Epstein, 1954; Zelen & Dannemiller, 
1961). The ith individual contributes a factor Ae-Ati to the likelihood if he is observed 
to die during the study interval (ti < z ,  = 1) and a factor e-";( or e-Az) if he survives 
until withdrawal (ti = T,  di = 0). Thus, the log-likelihood function is written 

I 

L(A) = 2 (6j log A -tJ) = d log (A) - nA, 
i = l  (4.8) 

where d = Ci 6, denotes the total number of events observed and n = Ci ti the total 
person-years observation time in the specified cell. The elementary estimate i = d/n  
introduced in Chapter 2 is thus seen to be maximum likelihood; it satisfies the 
likelihood equation dL/dA = d/A - n = 0. 

The exact probability distribution of i is extremely complicated due to the presence 
of the censoring times (Kalbfleisch & Prentice, 1980). Mendelhall and Lehman 
(1960) and Bartholomew (1963) have investigated the first few moments of the 
distribution, or rather that of the estimated mean survival time 1/& under the 
restriction that the censoring times are constant (z = T for all i). Approximations to 
the first two moments are available when the ?;- vary. However, these results are all 
sufficiently complex as to discourage their application to routine problems. One tends 
to rely instead on large sample normal approximations to the distribution that are 
based on the log-likeiihood (4.8). 

(b) The Poisson model 

One reason for the complexity of the exact distribution of d /n  is the fact that the 
observation time is terminated at ti < T for individuals who die. Much simpler 
distributional properties would obtain if each such subject were immediately replaced 
by an 'identical' one at the time of death, a type of experimental design that is possible 
in industrial life testing. For then, considering the ith individual and all subsequent 
replacements as a single experimental unit, the times of death or failure for that unit 
constitute observations on a single Poisson process on the interval 0 s  t s ?;:. The 4 ,  
which could then take on the values O,1,2, . . . rather than just 0 or 1, would have exact 
Poisson distributions with means AT. Since the sum of independent Poisson variables is 
also Poisson, it follows that the sampling distribution of d = Ci di would be given 
precisely by (4.7) with n = Ci T,, a fixed quantity. 

Noting the problems caused by the random observation times ti, Bartholomew 
(1963) proposed simply to ignore them in order to obtain an alternative estimate of A 
with a more tractable sampling distribution. The only random variables are then the 4 ,  
which have independent Bernoulli (0/1) distributions with probabilities pi = pr (6, = 1) 
= 1 - exp (-AT). If all z = T, d = Ci di follows the binomial law exactly. If the T, 
vary, but either they or A are sufficiently small that pr (d = 1) is moderate, then an 
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extension of the usual Poisson approximation to the binomial distribution (Armitage, 
1971) shows that d is approximately Poisson with mean A xi K .  

Both lines of reasoning suggest that the Poisson approximation to the exact sampling 
distribution of dln, i.e., treating d as Poisson with fixed mean An as in (4.7), will be 
adequate, provided that A is sufficiently small and that only a fraction of the cohort 
members are expected to become incident cases or deaths during the period in 
question. Then, the withdrawal of such cases from observation will have a negligible 
effect on the total observation time and xi ti will approximate xi KT;-. From another 
point of view, the number of 'units' that experience more than one event in the 
fictitious experiment described above will be negligible. Thus, when the number of 
deaths or cases d is small in comparison with the total cohort size, a condition which 
holds for many of the cohort studies of particular cancers that we have in mind, the 
Poisson model should provide a reasonable approximation to the exact distribution of 
the rate. Under these same conditions, moreover, the numbers of deaths occurring in 
different cells may be regarded as statistically independent. Due to their rarity, deaths 
occurring in one interval will have negligible effects on the probability that a specified 
number of deaths occurs in the next interval, even though they remove the individuals 
in question from risk. Hoem (1987) provides a formal statement and proof of this 
property that is based on unpublished work of Assmussen. 

(c) Asymptotic normality 

If the cases are numerous enough to make up a considerable fraction of the total 
cohort, the arguments just used to justify the Poisson approximation do not apply. One 
would probably tend not to use exact Poisson probabilities when the events are 
numerous anyway, but would instead rely on the approach to normality of estimators 
and tests based on the Poisson model. This point of view provides some reassurance 
regarding our reliance on approximate methods of inference based on the likelihood 
function. Since the log-likelihoods for the Poisson and exponential distributions, both 
being given by equation (4.8), are identical, it makes no difference which sampling 
framework we adopt for purposes of making likelihood inferences. The usual 
large-sample distributions of the maximum likelihood estimates and associated statistics 
are the same, whether we regard the number of deaths as random and the observation 
times as fixed, the times as random and the number of deaths as fixed, or both times 
and number of deaths as random. 

This conclusion holds also for problems with multiple cells and rates. Suppose there 
are J cells with associated death rates A,, and let aii denote whether (aii = 1) or not 
(aii = 0) the ith individual dies in the jth cell, while tii denotes his contribution to the 
observation time n, in that cell. According to the general theory of survival 
distributions (Kalbfleisch & Prentice, 1980; see also 85.2), the log-likelihood of the 
data may be written 

I J J 

L(A) = L(Al, - . - ,  A,) = z z hi, log Ai - ti$, = 2 d, log A, - n,A,. 
i= l  j=1 j=1 

(4.9) 

This likelihood also arises when the d, are independent Poisson variables with means 
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njAj or when the ti, form a censored sample of independent exponential survival times 
with death rate parameters 4 (Holford, 1980). However, because of the dependencies 
between deaths that occur in different intervals and the fact that the n, are random 
variables, neither of these exact sampling models is strictly correct. While they are 
adequate for large-sample likelihood inferences, such as made in this section, other 
properties based on the Poisson model (such as the standard errors given by equations 
(2.6) and (2.7)) may require also that the deaths be only a small fraction of the total 
persons in each cell in order that these be reasonably accurate (Hoem, 1987). 

In the sequel, log-likelihood functions similar to (4.9) will be considered as functions 
of a relatively small number of unknown parameters that describe the structure in the 
rates. The shape of the log-likelihood function can change drastically depending upon 
the model selected or even upon the choice of parameters used to describe a given 
model. As an example, suppose that ten deaths are observed in a single cell with 1000 
person-years of observation. Figure 4.4 contrasts the shape of the log-likelihood (4.9) 
of these data considered as a function of: (i) the death rate A itself; (ii) the expected 

Fig. 4.4 Exact (-) and approximate (- - - -) log-likelihoods for various parametriza- 
tions of the death rate, A, when d = 10 and n = 1000 
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lifetime 1/A; (iii) the cube-root transform A'", and (iv) the log death rate log A. Also 
shown are quadratic approximations to each likelihood that would apply if the data 
were normally distributed with a mean value equal to the unknown parameter and a 
fixed variance given by the observed information1 function evaluated at the maximum 
likelihood estimate. Comparison of the four figures shows that the cube-root and log 
parametrizations yield the most 'normal' looking likelihoods, whereas those for A anc 
especially 1 / A  are rather skewed. The cube-root transform, which also occurred in 
Byar's approximation to Poisson err0.r probabilities (equations (2.11) and (2.3.3)), has 
the property that it exactly eliminates the cubic term in a series expansion of L about 
the maximum likelihood estimate (Sprott, 1973). Empirical work by Schou and Vaeth 
(1980) has confirmed that the sampling distributions of log f i  and fil" are more nearly 
normal in finite samples than those of fi or its inverse. 

The implication of these results for the statistician is that statistical inferences that 
rely on asymptotic normal theory are better carried out using procedures that are 
invariant under transformations of the basic parameters. The maximum likelihood 
estimate itself satisfies this requirement, as do likelihood ratio tests, score tests 
computed with expected information, and confidence intervals obtained by inverting 
such invariant tests. However, procedures based on a comparison of the point estimatz 
with its standard error as obtained from the normal (quadratic) approximation to the 
log-likelihood are not generally reliable and should be used only if the normal 
approximation is known to be good (Vaeth, 1985). This condition is met for 
parameters in the standard multiplicative models considered below, as it was for the 
logistic models discussed in Volume 1. It is not met for other models, as we shall see. 

4.3 Fitting the multiplicative model 

Most of the features of the multiplicative model for rates are already present in the 
two-dimensional table considered in $4.1. We continue to think of the basic data as 
being stratified in two dimensions. The first dimension corresponds to nuisance factors 
such as age and calendar time, the effects of which on the baseline rates are conceded 
in advance and are generally of secondary interest in the study at hand. The second 
dimension corresponds to the exposure variables, the effects of which we wish to model 
explicitly. The total number of cells into which the data are grouped is thus the product 
of J strata and K exposure categories. The basic data consist of the counts of deaths dik 
and the person-years denominators nik in each cell, together with p-dimensional row 

(1) vectors xik = (xi, , . . . , x$)) of regression variables. These latter may represent either 
qualitative or quantitative effects of the exposures on the stratum-specific rates, 
interactions among the exposures and interactions between exposure variables and 
stratification (nuisance) variables. 

Recall from 06.4 of Volume 1 or elsewhere that the information is defined as minus the second derivative 
of L. Since we consider some models in this volume for which the information depends on the data, a 
distinction is made between the observed information and its expectation. The latter is also known as Fisher 
information. 
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(a)  The model equation 

A general form of the multiplicative model is 

where the Ajk are the unknown true disease rates, the are nuisance parameters 
specifying the effects of age and other stratification variables, and P = ( P I ,  . . . , PP)' is 
a p-dimensional column vector of regression coefficients that describe the effects of 
primary interest. An important feature of this and other models introduced below is 
that the disease rates depend on the exposures only through the quantity a, + xjkP, 
which is known as the linear predictor. If the regression variables xjk depend only on 
the exposure category k and not on j, (4.10) specifies a purely multiplicative 
relationship such that the ratio of disease rates Ajk/hkr for two exposure levels k and 
k',  namely exp { ( x k  - xkI)fi), is constant over the strata. Evaluation of the goodness- 
of-fit of such models informs us as to whether a summary of the data in terms of 
relative risk is reasonably plausible. If the ratios Ajk/Ajkr  change with j, additional 
variables xjk which depend on both j and k and describe interactions between stratum 
and exposure effects may be needed to provide a comprehensive summary of the data. 

The simple multiplicative model (4.2) for the two-dimensional table of rates is 
expressed by taking the x variables to be dummy or indicator variables with a value of 
1 for a particular exposure category and 0 elsewhere. A total of K - 1 such indicator 
variables is needed to express the relative risks associated with the different exposure 
categories, the first level ( k  = 1) typically being used as a reference or baseline 
category. The advantage of the more general model (4.10) is that it allows us to 
quantify the relative risks according to measured dose levels, impose some structure on 
the joint effects of two or more exposures, and relax the strict multiplicative hypothesis 
through the introduction of interaction terms. These features are developed below in a 
series of examples. However, we first discuss implementation of the methodology using 
the Royal Statistical Society's GLIM program for fitting generalized linear models 
(Baker & Nelder, 1978). 

( b )  Fitting the model with GLIM 

Input to GLIM or other standard programs will consist of up to JK data records 
containing the counts d of disease cases or deaths, the person-years denominators njk, 
the values x$), . . . , x$) of the regression variables to be included in the model, and 
sufficient additional data to identify each stratum (j) and exposure category (k). 
Records for (j, k )  cells with no person-years of observation (njk = 0 )  are usually 
omitted. 

If some or all of the exposures are to be analysed as qualitative or discrete variables, 
it is not necessary to construct the 011 indicators explicitly for each exposure category 
or stratum, since GLIM makes provision in its FACTOR command for designating 
certain input variables as qualitative. Their values ( 1 , 2 .  . . ) are then presumed to 
designate the factor level. By default, the first level is taken as baseline, binary 
indicator variables being constructed by the program for each higher level. 

According to $4.2 the numbers of deaths djk from a specific cause may be regarded 
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as independent Poisson variables with mean values E(djk) = njk?Ljk. In view of (4.10) we 
have 

log E(djk) = log (n,k) + aci + xikP- (4.11) 

Since the log transform of the mean is a linear function of the unknown parameters a 
and p, the model conforms to the usual log-linear model for Poisson variables and as 
such is easily fitted using standard features of GLIM. Note that the constants log (njk) 
offset the model equation (4.11) from the origin in the sense that the log mean equals 
log (njk) when the a and p parameters are zero. This means that a variable containing 
the log person-years denominators is declared an OFFSET when invoking the 
program. In order to fit a separate a, for each stratum level, it is easiest to create a 
stratum variable taking values j = 1, . . . , J and declare it as a FACTOR. When the 
strata are formed by combinations of two or more variables, these may each be 
declared FACTORS and included in the model with all their interactions. The 
exposures are treated as either variables or factors, depending upon whether 
quantitative or qualitative (categorical) effects are to be specified. 

An alternative GLIM approach is to define the dependent or y variable as the 
observed rate & = djk/njk and to declare the person-years denominator njk as a prior 
WEIGHT. Then, no OFFSET is needed. This approach also applies with the additive 
(identity) and power 'link' functions considered in 54.4, whereas the approach that 
declares log (njk) to be an OFFSET does not. See Frome and Checkoway (1985). 

( c )  Summary measures of Jit 

Summary measures of fit give an overall evaluation of the agreement between 
observed and fitted values. Two are in common use. One is the X 2  statistic already 
defined in (4.6) as .the sum of the -squared residuals. The other is the log-likelihood 
ratio statistic that compares the observed and fitted values via 

G2 is known as the deviance in GLIM. c2 and X 2  are referred to tables of the 
chi-square distribution in order to ascertain the overall goodness-of-fit. They tend to 
give similar values in most applications. Both may overstate the degree of departure 
from the fitted model when many cells contain small counts (Fienberg, 1980) and when 
they are interpreted as chi-square statistics; a correction factor for G2 is available 
(Williams, 1976). 

The degrees of freedom associated with these statistics equal the number of cells 
with nonzero person-years of observation minus the number of linearly independent 
parameters in the model, namely J + p in the above formulation. When the value of G2 
or X 2  exceeds its degrees of freedom by an amount significantly greater than expected 
under chi-square sampling, we conclude that the fit is inadequate. Either there are 
systematic effects that have not been accounted for by the model, or else the random 
variation in disease rates among neighbouring cells is greater than that specified by the 
Poisson assumption. Agreement between the deviance and its degrees of freedom does 



138 BRESLOW AND DAY 

not guarantee that the fit is good, however, particularly when the degrees of freedom 
are large. Systematic patterns or trends in the residuals that may be indicative of 
departures from model assumptions, and large residual values for individual cells, often 
are not reilected adequately in the summary measure. Also, a good fit for a model 
based on a cross-classification that ignores relevant covariables does not imply that 
such variables are unimportant or should not be considered. 

(d) Adding variables to the model equation 

The most common remedy for the lack of fit of a given model equation, or for 
examining whether systematic departures from model assumptions are being obscured 
by the global goodness-of-fit statistic, is to add regression variables. Indeed, the 
process of model building generally involves fitting a hierarchy of model equations that 
represent increasing degrees of complexity in the relationship between the relative risk 
and the exposure variables, or increasingly complex interaction (modifying) effects of 
the stratification variables with the exposure variables. Comparison of the goodness-of- 
fit measures for two different models, one of which is contained within the other, 
provides a formal test of the statistical significance of the additional variables. Thus, if 
Gf and G; are the deviances for models 1 and 2, where model 2 contains q more 
independent parameters than model 1, the difference G f -  G; is treated as a 
chi-square statistic with q degrees of freedom for testing the significance of the 
additional variables. Two other commonly used tests, one based on the estimated 
regression coefficients and the other on the efficient score (first derivative of the 
log-likelihood), are briefly described in 06.4 of Volume 1. 

(e) Further evaluation of goodness-of -fit: analysis of residuals 

The extent to which the model summarizes the data can be evaluated globally by an 
overall goodness-of-fit test, but often a more informative approach is to examine how 
well the number of deaths in each cell is predicted. This is accomplished by comparing 
the observed numbers of deaths djk in each cell with the fitted number djk = 
njk exp (kj  + xjk?), where $ and ? denote the maximum likelihood estimates. Inorder 
to get some idea of whether the deviations between observed and fitted values are 
greater than would be expected from sampling (Poisson) variability, we calculate the 
standardized residuals ri, = (djk - d j k ) / a .  Since they have the form of the difference 
between an observation and its estimated mean, divided by the estimated standard 
deviation under the Poisson model, the qk may be regarded roughly as equivalent 
normal deviates when assessing the fit for any particular cell. A refinement, taking 
account of the number of fitted parameters, is to consider as equivalent normal 
deviates the adjusted residuals 

where .the hik denote the diagonal element of the 'hat7 or projection matrix that arises 
in the theory of linear regression (Hoaglin & Welsh, '1978). These are available in 
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GLIM as the product of the 'iterative weights', which equal djk for the multiplicative 
Poisson model, times the variances of the linear predictors. In other words, for the 
multiplicative model, 

The sum of the hjk equals the number of parameters estimated, namely J +p. 
Modern texts on regression anslysis (e.g., Cook & Weisberg, 1982) devote 

considerable attention to graphical me,thods of residual analysis. Certain patterns in the 
residuals are indicative of specific types of departures from model assumptions. For 
example, a tendency for the absolute values lqkl to increase with djk would indicate that 
the equality of mean and variance specified by the Poisson model was inadequate and 
that the variability increased faster than as a linear function of the mean. Correlations 
between the residuals and regression variables not yet included in the model equation 
would indicate that the model was incomplete, whereas correlations with certain 
functions of the fitted values may indicate that the log-linear specification (4.11) is 
inadequate and that the death rates hjk are better modelled by some other function of 
the linear predictors (Pregibon, 1980). We present some examples of graphical residual 
analyses in the sequel, but systematic discussion of their rationale and use is beyond 
the scope of this monograph. 

( f )  Gauging the influence of individual data points 

Another aspect of model checking, apart from examination of residuals, is to 
determine the influence that individual data points have on the estimated regression 
coefficients iu, and fi. The investigator needs to be aware whenever elimination of one 
of the (j, k) cells from the analysis would lead to a particularly marked change in the 
fitted model. Sometimes, such influential cells are also 'outliers', in the sense that the 
multivariable observation (djk, njk, xjk) is far removed from the rest of the data. It is 
important to check that such data have been correctly recorded and are not in error. 
The same is true for data points that give rise to large residuals. 'Robust' regression 
methods have been developed specifically to reduce the influence of such outlying 
observations (Huber, 1983); however, the rationale for their use is not entirely clear 
when the data in question are known to be valid. A concerted effort to understand why 
the particular observation does not conform to the rest of the data may be more 
important than finding the model that best fits when that point is removed. 

Influential data points are often reasonably well fitted by the model and not 
amenable to detection by an examination of their residuals. More sensitive measures of 
influence can be developed using a combination of the residuals and the diagonal 
elements hjk of the 'hat' matrix (equation 4.14). A rough rule of thumb for general 
applications is to regard an individual observation as having a particularly heavy 
influence on the overall fit if the corresponding hjk exceeds twice the average value 
(Hoaglin & Welsh, 1978). This rule is not applicable in the present context, however, 
since cells with large person-years and expected numbers of cases will- necessarily have 
a large impact on the fit. Rather, we use the. hjk diagnostics in a descriptive and 
comparative manner to identify those cells that have the greatest overall influence on 
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the fit and to demonstrate that the relative influence of different cells on the regression 
coefficients can depend on the transformation linking the rates 3Ljk to the linear 
predictor. 

Measures of the influence of individual cells on particular regression coefficients 
involve these same basic quantities (Pregibon, 1979, 1981). In particular, an ap- 
proximation to the change in the estimated regression coefficients (&, 8) that is 
occasioned by deletion of the (j, k) cell from the statistical analysis is given by 

A(& , b) -jk -$ x;(djk - djk)/(l - hjk), (4.15) 

where $ denotes the asymptotic covariance matrix of the estimates (a, 6) and x; = (0, 
. . . 1, . . . , 0, xjk) denotes an augmented vector of regression variables preceded by 3 
stratum indicators of which the jth equals one. 

Example 4.1 
Appendix VI contains grouped data from a recent update (Peto, J. et al., 1984) of the Welsh nickel 

refinery workers study that is described in detail in Appendix ID. Previously published data from this study 
(Doll et al., 1970) were used in 43.5 to illustrate techniques of internal standardization. The latest follow-up 
through 1981 uncovered 137 lung cancer deaths among men aged 40-85 years and 56 deaths from cancer of 
the nasal sinus. 

Nasal sinus cancer deaths and person-years of observation are classified in Appendix VI by three risk 
factors: (i) age at first employment (AFE) in four levels (1 = <20; 2 = 20-27.4; 3 = 27.5-34.9; and 4 = 35+ 
years); (ii) calendar year of first employment ( W E )  in four levels (1 = 4 9 1 0 ;  2 = 1910-1914; 3 = 1915- 
1919; and 4 = 1920-1924); and (iii) time since first employment (TFE) in five levels (1 = 0-19; 2 = 20-29; 
3 = 30-39; 4 = 40-49; and 5 = 50+ years). Since less than one case of nasal sinus cancer would have been 
expected from national rates, it was deemed unnecessary to account for the background rates. Instead, the 
object was to study the evolution of nasal sinus cancer risk as a function of time since first exposure, and to 
determine whether this was influenced by the age and year in which that exposure began. 

Table 4.3 displays the GLIM commands needed to read the 72 data records, fit the log-linear model with 
main effects for factors AFE, YFE and TFE, and print the results shown in Tables 4.5 and 4.6. Models 
involving a number of other combinations of these same factors were investigated also. Their deviances, 
displayed in Table 4.4, demonstrate that the three factors have strong, independent effects on rates of nasal 
sinus cancer. The log-likelihood ratio statistics of 95.6 - 58.2 = 37.4 for AFE, 83.5 - 58.2 = 25.3 for YFE and 
70.8 - 58.2 = 12.6 for TFE, with 3, 3 and 4 degrees of freedom, are all highly significant. The parameter 
estimates in Table 4.5 indicate that nasal sinus cancer risk increases steadily with both age at and time since 
first exposure, and that it peaks for men who were first employed in the 1910-1914 period. Since the global 
tests for two-factor interactions are of at most borderline significance, the largest being 16.4 (9 degrees of 
freedom, p = 0.06) for YFE x TFE, we conclude that the simple multiplicative model provides a reasonable 
description of the data. Further support for this conclusion is obtained by comparing observed and fitted 
numbers of cases classified by AFE X TFE collapsing over YFE (Table 4.6), and similarly for the other 
two-factor combinations. The greatest discrepancy is observed for the YFE x TFE cross-classification (not 
shown), where four cases are observed in the cell with YFE = 4 9 1 0  and TFE = 20-29 years, whereas only 
1.30 are expected under the model (x :  = 5.6). We are inclined to interpret this aberrant value as a chance 
occurrence. 

The marginal totals of expected numbers of deaths in Table 4.6 agree exactly with the observed numbers, 
which confirms this as a defining characteristic of the maximum likelihood fitting of the log-linear model 
(Fienberg, 1980). Inclusion of the main effects of AFE, YFE and TFE in the model ensures that the fitted 
values for each of these factors, when summed over the levels of the other two, will agree with the subtotals 
of observed values. (Inclusion of the AFE X TFE interactions in the model in addition to the main effects 
would result in subtotals of fitted values for the AFE x TFE two-dimensional marginal table that agree with 
the corresponding observed subtotals.) Table 4.6 also illustrates a fundamental property of the 'hat' matrix 
elements, h ,  namely, that their grand total equals the number of independent parameters in the model. In 
this example, there is one parameter associated with the constant term or grand mean (see Table 4-59, three 
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Table 4.3 GLlM commands used to analyse the data in Appendix VI 

$UIVITS 72 ! 72 DATA RECORDS IN FILE IN APPENDIX VI; EQUATE TO FORTRAN UNIT 1 
$DATA AFE YFE TFE CASE PY! NAMES OF 5 VARIABLES TO BE READ FROM FILE 
$DINPUT 1 80 ! READ DATA FROM FORTRAN UNIT 1 
$FACTOR 72 AFE 4 YFE 4 TFE 5 ! DECLARE FACTORS WITH 4 AND 5 LEVELS EACH 
$CAL LPY = %LOG(PY) ! CALCULATE LOG PERSON-YEARS 
$OFFSET LPY ! DECLARE LOG PERSON-YEARS AS OFFSET TO MODEL EQUATION 
$ERR P ! POISSON MODEL WITH DEFAULT (LOG-LINEAR) I-INK 
$WAR CASE ! IVO. OF NASAL CANCERS (CASE) AS DEPENDENT VARIABLE 
$FIT AFE + YFE + TFE ! FIT LOG-LINEAR MODEL WITH MAIN EFFECTS FOR EACH FACTOR 
$ACC 5 ! CHANGE NO. OF DECIMALS IIV PRINTOUT 
$REC 10 $FIT. ! REFIT SAME MODEL FOR GREATER ACCURACY 
$DIS M E$ ! DISPLAY MODEL AND PARAMETER ESTIMATES. SEE TABLE 4.5 
$EXT %VL %PE ! EXTRACT VARIANCE OF LINEAR PREDICTOR AND PARAMETER ESTIMATES 
$VAR 11 PR ! DECLARE REL RISK RR AS VARIABLE OF DIMEN'SION 11 
$CAL RR = %EXP(%PE) $LOOK RR $ ! CALCULATE AND PRINT REL RISKS FOR TABLE 4.5 
$CAL H = %WT*%VL ! CALCULATE DIAGONAL ELEMENTS OF 'HAT' MATRIX H 
$CAL I = 5*(AFE-1) +TFE ! SET UP INDEX FOR CELLS IN AFE BY 'TFE MARGINAL TABLE 
$VAR 20 CAST EXPT PYT HT ! SET UP VARIABLES OF DIMENSION 20 
$CAL CAST = 0 : EXPT = 0 : PYT = 0 : HT = 0 ! INITIALIZE ARRAYS 
$CAL CAST(I) = CAST (I) + CASE : EXPT(1) = EXPT(I) + %FV : PYT(I) + PYT(I) + PY$ 
$CAL HT(I) = HT(I) + H ! CULULATE SUBTOTALS OF CASES, FlUED VALLIES ETC. OVER YFE 
$LOOK CAST EXPT PTY HT ! PRINTOUT FOR TABLE 4.6 
$STOP 

Table 4.4 Goodness-of-fit statistics (deviances) for a 
number of multiplicative models fitted to  the data on 
Welsh nickel refinery workers in Appendix VI 

Factors in modela Degrees of freedom Deviance 

- 7 1 135.7 
AFE 68 109.1 
Y FE 68 100.6 
TFE 67 120.6 
AFE + YFE 65 70.8 
AFE + TFE 64 83.5 
YFE + TFE 64 95.6 
AFE + YFE + TFE 6 1 58.2 
AFE*YFE~ + TFE 52 49.2 
AFE*TFE + YFE 50 48.5 
YFE*TFE + AFE 50 41.8 

a AFE, age at first employment; YFE, year of first employment; TFE, time 
since first employment 

b ~ ~ ~ * Y F E  indicates, in standard GLlM notation, that both main effects 
and. first-order interactions involving the indicated factors are included in 
the model equation. 
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Table 4.5 Regression coefficients, standard errors and associated relative risks for 
the multiplicative model fitted to data on nasal sinus cancers in Welsh nickel 
refinery workers (Appendix VI) 

Factora Level Regression coefficient Relative riskb 
f standard error 

AFE <20 - 1 .O 
20.0-27.4 1.67 f 0.75 5.3 
27.5-34.9 2.48 f 0.76 12.0 
35+ 3.43 f 0.78 30.8 

Y FE <I910 - 1 .O 
1910-14 0.62 f 0.37 1.9 
1915-19 0.05 f 0.47 1 .I 
1920-24 -1.13 f 0.45 0.3 

-rFE <20 - 1 .O 
20-29 1.60 f 1.05 4.9 
30-39 1.75 f 1.06 5.8 
40-49 2.35 f 1.07 10.5 
50 + 2.82f 1.12 16.7 

Constant term -9.27 f 1.32 Estimated baselinec rate of nasal 
sinus cancer deaths: 9.42 per 
100 000 person-years 

Deviance: G2 = 58.2 on 61 degrees of freedom 

a AFE, age at first employment; YFE, year of first employment; TFE, time since first employment 
Exponentiated regression coefficients 
For AFE < 20, YFE < 1910 and TFE < 20 

each with AFE and YFE and four with TFE, for a total of 11. Note that the larger values of h+ are generally 
associated with the cells with the largest number of observed deaths. 

4.4 Choosing between additive and multiplicative models 

If a good fit is obtainable with the multiplicative model only by introducing 
complicated interaction terms involving baseline and exposure factors, re-examination 
of the basic multiplicative relationship is usually in order. It may be that the effects of 
exposure are better and more easily expressed on another scale. Formal evaluation of 
the relative merits of the multiplicative and additive models for any particular set of 
regression variables is made possible by embedding them in a wider class of models 
that contain both as special cases. One useful class of models for this purpose is the 
.power family 

that relates the disease rates to the linear predictors aj + xjk$ by means of the power 
transform with exponent p (Aranda-Ordaz, 1983). The additive model corresponds to 
the case p = 1, whereas, since (AP  - 1)lp tends to log A in the limit as p tends towards 
zero, the multiplicative model corkesponds to p = 0. 

Power models may be fitted easily using GLIM. The dependent or y observations, 
assumed to have a Poisson error structure, are the rates ijk = djk/njk rather than 



FllTlNG MODELS TO GROUPED DATA 143 

Table 4.6 Results of fitting the multiplicative model to the data on Welsh nickel refinery workers in 
Appendix VI: observed (0 )  and expected (E) numbers of nasal sinus cancer deaths, person-years 
(P-Y) and summed regression diagnostics h by age at first employment and time since first 
employment 

Age at first 
employment 
(years) 

Years since first employment 

0-19 20-29 30-39 40-49 50+ Total 

35+ 

Total 

<20 0 
E" 
P-Y 
h+ 

20.0-27.4 0 
E 
P-Y 
h+ 

27.5-34.4 O 
E 
P-Y 
h+ 
0 
E 
P-Y 
h+ 
0 
E 
P-Y 
h+ 

a Expected values adjusted also for year of first employment 
bRegression diagnostics h summed over levels of year of first employment. These values should not be substituted in the 

expression for adjusted residuals (equation 4.13). 

the numbers of deaths; the person-years denominators are treated as prior weights, 
using the WEIGHT command. The model (4.16) is available as an alternative GLIM 
'link' for Poisson observations. 

Diagonal elements of the 'hat' matrix are obtained at convergence as 

where yk is the GLIM iterated weight for the power model and il,, = kjk + xjk(Z is the 
linear predictor. The approximate change in the regression coefficients upon deletion 
of the (j, k)th cell of data is given by 

where x; is the vector of augmented regression variables, yjk denotes the GLIM 
'working variable', and $ is again the covariance matrix of the estimated parameters. 

Example 4.2 
The data on coronary deaths among British male doctors shown in Table 3.15 offer a simple example for 

examining some of these issues regarding goodness-of-fit and model selection. The rate ratios for smokers 
versus nonsmokers decrease with advancing age, while the rate differences generally increase. This suggests 
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Fig. 4.5 Goodness-of-fit statistics ( G ~ )  for a variety of power models fitted to the data 
in Table 3.15 

- Multiplicative 

- Additive 

0 0 0.0 0.5 1.0 

Exponent in power transformation 

that neither the multiplicative nor the additive model is completely appropriate for expressing the effect of 
smoking in a single number, and  that some intermediate power model might work better. Accordingly, 
several models of the form (4.16) were fitted with a single binary exposure variable coded 0 for nonsmokers 
and 1 for smokers. Figure 4.5 shows that the minimum value of the deviance G2, nominally a 
chi-square-distributed statistic with 10 - 6 = 4 degrees of freedom, occurs in the vicinity of p = 0.55, 
intermediate between the additive and multiplicative models. Neither of these extremes provides a 
satisfactory fit, since one finds G2 = 12.1 for the multiplicative and G2 = 7.4 for the additive structure, 
compared with G2 = 2.1 for the best power transform. 

Table 4.7 presents estimates and standard errors for the five parameters and the single smoking 
coefficient /3 under each of the three models. When suitably transformed, the a 's  represent the fitted death 
rates among nonsmokers per 1000 person-years of observation. Under the additive model, for example, the 
fitted rate for men aged 55-64 years is 6.2 deaths per 1000 population per year. For the power model the rate 
per 1000 person-years is (2 .180) ( "~ .~~ '  = 4 . 1 , a nd for the multiplicative model it is exp (1.616) = 5.0. Smoking 
is estimated to increase (add to) the death rate by 0.59 deaths per 1000 person-years under the additive 
model, while under the multiplicative model smoking multiplies the death rate by exp (0.355) = 1.43 at all 
ages. The smoking effect is not so conveniently expressed on the power scale, but since p and /3 are each 
about equal to 0.5 it may be roughly described as increasing the square root of the death rate per 1000 
person-years by one-half. Note that t statistics of the form t = P / s E ( P )  yield roughly comparable values for 
all three models with these data. The likelihood ratio (deviance) tests for smoking (/3 = 0)  are obtained by 
subtracting the goodness-of-fit deviances in Table 4.7 from the deviance for the model with age effects only, 
which equals 23.99 regardless of the value of p.  Best agreement between the t test and deviance test of 
smoking effect is found for the multiplicative model. 

Table 4.7 also shows the fitted numbers of deaths djk for smokers and nonsmokers under the three models. 
These were combined with the diagnostic values hi, to calculate adjusted residuals 5, (equation 4.13). The 
'hat' matrix elements hjk, approximate changes in the smoking coefficient from equation 4.15 or 4.17 and 
adjusted residuals 5, are all displayed in Table 4.8. 

Examination of the entries in the first two parts of Table 4.8 shows that the data for the youngest age 
group, which contains a small number of deaths observed in a rather large population, have the greatest 
influence on the estimated rate difference in the additive model. More of the information about the rate ratio 
under the multiplicative model comes from older age groups where there are larger numbers of deaths. The 
power model occupies an intermediate position vis-2-vis the diagnostics h,,, and deletion of single cells has 
little effect on the smoking parameter. The residual patterns are in the anticipated direction, the death rates 
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Table 4.7 Parameter estimates and fitted values for three statistical models for the data 
on coronary deaths among British male doctors in Table 3.15 

Age range 
(years) 

Parameter Statistical modela 

Additive (p = 1) Power (p = 0.55) Multiplicative (p = 0) 

35-44 
45-54 
55-64 
65-74 
75-84 

Smoking 

t2 = ( ~ ~ I s E ( P ) ) ~  

Goodness- 
of-fit 
(deviance) X $  

Deviance test 
for smoking 
effect X: 

Parameter estimates f S E ~  

f f1  
0.084 f 0.066 0.276 f 0.092 

ff2 1.641 f 0.218 1.115f 0.110 

ff3 
6.304 f 0.456 2.456 f 0.1 32 

ff4 
13.524 f 0.964 3.859 f 0.1 80 

ff5 
19.170 f 1.704 4.763 f 0.257 

Fitted valuesc 

Non- Non- 

smokers Smokers smokers Smokers 

1.59 35.37 1.81 32.53 
17.51 96.50 13.00 102.56 
35.99 197.25 29.26 204.49 
34.96 178.73 30.1 2 183.61 
28.03 105.07 24.97 108.65 

a Exponent (p) of power function relating death rates and linear predictor 
Person-years denominators expressed in units of 1000 

"See Table 3.15 for observed values 

Non- 

smokers Smokers 

for smokers being seriously underestimated by the multiplicative model in the youngest age group and 
seriously overestimated in the oldest group. By contrast, in spite of the heavy influence of this age group on 
the estimated regression coefficients, the death rate among 35-44-year-old smokers is seriously overestim- 
ated by the additive model. With the power model, the residuals are all quite small, indicative of the good 
fit, and none of them shows statistically significant deviations when referred to tables of the standard normal 
distribution. 

An alternative method of examining the goodness-of-fit is via the introduction of regression variables 
representing the interaction of smoking and age. For this purpose we defined a single quantitative interaction 
term in coded age and exposure levels, namely xjk = (j - 3)(k - 1.5) for j = 1, 2, . . . , 5 and k = 1,2. The 
constants 3 and 1.5 were subtracted before multiplying in order that the interaction variable be not too highly 
correlated with the main effects for age and smoking (see 56.10, Volume 1). Table 4.9 shows the estimated 
regression coefficient 7 of the interaction variable, its standard error, and the goodness-of-fit statistic G' for 
each of the three basic models. The deviances at the bottom of Table 4.7 show that introduction of the 
interaction term results in a marked improvement in fit for both additive and multiplicative models. Note 
that the estimated interaction term is positive in the additive model, indicating that the rate difference 
increases with age, and negative in the multiplicative model, indicating that the rate ratios decline. These 
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Table 4.8 Regression diagnostics and adjusted residuals for three 
statistical models fitted to the data on coronary deaths among British 
male doctors (Table 3.15) 

Age range Statistical model 
(years) 
(j) Additive (p = 1) Power (p = 0.55) Multiplicative ( p  = 0 )  

Non- Non- 
smokers Smokers smokers 
( k = l )  ( k = 2 )  ( k = l )  

Diagonal elements of hat matrix (hi,) 
35-44 0.98 0.93 0.67 
45-54 0.31 0.77 0.42 
55-64 0.19 0.82 0.28 
65-74 0.18 0.83 0.22 
75-84 0.22 0.78 0.24 

Smokers 
( k = 2 )  

Non- 
smokers 
(k= 1) 

Smokers 
( k =  2) 

Approximate change in P coefficient for smoking after deletion of 
each observation 

Adjusted residuals (c,) 

Table 4.9 Fitting of a quantitative interaction variable in age x smoking to the data on 
coronary deaths among British male doctors (Table 3.15): regression coefficients f 
standard errors for three statistical models 

Statistical model 

Additive (p = 1) Power (p = 0.55) Multiplicative (p = 0) 

Coefficient y 0.732 f 0.301 -0.024 f 0.095 -0.309 f 0.097 
Goodness-of-fit 

G2 on 3 degrees 
of freedom 2.16 2.08 1.55 

feqtures are of course already evident from the original data (Table 3.15). The fit to the power model was 
improved scarcely at all by the interaction terms. Thus, for these simple data, inclusion of interaction 
variables to measure lack of fit gives the same result as when lack of fit is evaluated via the power model. 

4.5 Grouped data analyses of the Montana cohort with the multiplicative model 

We now turn to a re-examination of the data on  Montana smelter workers analysed 
in Chapter 3, in order to  illustrate how the results of model fitting compare with the 
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techniques of standardization. Appendix V contains the data records from the 
Montana smelter workers study that were analysed earlier using standardization and 
related techniques (Tables 3.3, 3.11 and 3.16). There are J = 16 strata formed by the 
combination of four ten-year age groups and four calendar periods of variable length. 
The K = 8 'exposure' categories are defined by the combination of two periods of first 
employment or date of hire (1 = pre-1925, 2 = post-1925) and four categories of 
duration of employment in work areas with high or medium exposure to arsenic 
(1 = <1 years, 2 = 1-4 years, 3 = 5-14 years, 4 = 15+ years). The coded levels for 
these four factors (AGE, YEAR, PERiod and Exposure duration) appear as the first 
four columns (variables) in the data set. For 14 of the 4 x 4 x 2 x 4 = 128 combinations 
of these factors, no person-years of observation, and hence no deaths, occurred and no 
data record is included. These include the combinations with AGE = 1 (40-49 years), 
YEAR = 3 or 4 (1960-1977), and PER = 1 (pre-1925) and those with AGE = 2, 
YEAR = 4 and PER = 1. Individuals in these categories, being under 50 years of age in 
1960, would have been aged 14 or less in 1925 and unlikely to have started work 
earlier. Likewise, there is no observation at AGE = 4 (60-79 years), YEAR = 1 
(1938-1949), PER = 2 (post-1925) and EXP = 4 (15+ years). 

(a )  Estimation of relative risk 

Our first goal is to reproduce as closely as possible the results obtained in the last 
chapter. Recall that relative risks of respiratory cancer for each duration of arsenic 
exposure were obtained separately for the pre-and post-1925 cohorts by three methods: 
(i) external standardization (Table 3.3); (ii) internal standardization (Table 3.11); and 
(iii) the Mantel-Haenszel procedure (Table 3.11). Maximum likelihood estimates of 
these same relative risks, using a multiplicative model with three binary exposure 
variables to represent the effect of each exposure category versus baseline (0-0.9 years 
heavylmedium arsenic exposure) and a varying number of stratum parameters aj to 
represent the effects of age and calendar year, are shown in Table 4.10. Differences in 
the degrees of freedom for the goodness-of-fit statistics used with each subcohort are 
due to the fact that information on person-years was available for different combina- 
tions of age-year-exposure. For the pre-1925 cohort there were 13 age x year strata, 
and each of these had a data record for the full complement of four exposure 
categories. Thus, the total number of data records is 4 x 13 = 52 and the degrees of 
freedom are 52 - 13 - 3 = 36. For the post-1925 cohort, two of the 4 x 16 = 64 possible 
exposure-age-year combinations were missing, and since there were 16 + 3 = 19 
parameters estimated, the degrees of freedom numbered 62 - 19 = 43. 

( b )  Testing for heterogeneity and trend in the relative risk with exposure duration 

The relative risk estimates and likelihood ratio (deviance) tests for heterogeneity and 
trend obtained via maximum likelihood fitting (Table 4.10) agree reasonably well with 
those based on Mantel-Haenszel methodology (Table 3.11). The Mantel-Haenszel 
style test statistics (3.24) and (3.25) are in fact efficient score tests based on the 
multiplicative model (4.2), as were the analogous statistics developed in Volume 1 for 
case-control data (Day & Byar, 1979). When interpreting the individual relative risk 
estimates by comparing each exposure group with baseline, it is important to 
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Table 4.10 Fitting o f  multiplicative models to grouped data from the Montana smelter 
workers study: internal estimation of baseline rates 

Variable fitted Relative risk (exponentiated regression coefficient) and standardized regression 
coefficient (in parentheses) 

Employed Employed Combined cohort 
prior 1925 
to 1925 or after Four levels Two levels 

of exposure of exposure 

Exposure duration (years) 
Under 1 1 .O 1 .O 1 .O 1 .O 

1-4 2.43 (3.20) 2.10 (3.88) 2.21 (5.04) 
5-14 1.96 (2.15) 1.67 (1.84) 1.77 (2.77) 2.1 9 (6.45) 

15+ 3.12 (5.10) 1.75 (1.52) 2.58 (5.25) 
Pre-1925 employment - - 1.62 (3.23) 1.66 (3.46) 
Deviance (G') 32.9 56.0 96.8 99.2 
Degrees of freedom 36 43 94 96 
Tests of significance 

of exposure based on G2 
Global xz  = 28.3 x z  = 15.8 x$ = 42.4 
Trend x: = 24.7 x: = 8.9 x: = 32.7 

x: = 39.7 

remember that they utilize information from all the exposure categories, and not just 
the two in question. For example, the estimated risk ratio of G2 = 2.43 comparing rates 
in the 1-4-year exposure duration category to those in the under-1-year category uses 
some information from the comparisons of the 1-4 versus 5-9 and under 1 versus 5-9 
categories, and so on. Were we to estimate the relative risks for pairwise comparisons 
of exposure categories using only the data for each pair, whether by Mantel-Haenszel 
or maximum likelihood, the resulting estimates would fail to be consistent with each 
other. The product of estimated relative risks for under 1 versus 1-4 and 1-4 versus 
5-9 years would not necessarily equal the relative risk for under 1 versus 5-9. The 
same phenomenon was noted also for case-control studies (994.5 and 5.5, Volume 1). 
Consistency is achieved only by building it into the fitted model. 

(c) Evaluating the goodness-of -fit of the multiplicative model 

An evaluation of the goodness-of-fit of the multiplicative model was made by 
examination of residuals and the addition of interaction terms to the model equation. 
While the goodness-of-fit statistic for the pre-1925 cohort is slightly less than its degrees 
of freedom, indicating that the model fits reasonably well overall, that for the post-1925 
cohort is larger (G2= 56.0, degrees of freedom = 43, p = 0.09). The corresponding 
chi-square statistic is xi, = 54.9. However, examination of the observed and fitted 
numbers of deaths for the 62 age-year-exposure cells for this cohort reveals no 
particular pattern to the lack of fit. The greatest contribution to chi-square is from the 
15+ year exposure category for ages 50-59 and years 1950-1959 where two respiratory 
cancer deaths were observed versus 0.24 expected from the multiplicative model. 
Elimination of this one cell would markedly improve the fit. The example also serves as 
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Table 4.11 Evaluating the goodness-of-fit of the multiplicative model of Table 
4.10; deviance test statistics for interaction effects 

Interaction effect Degrees Employed prior Employed 1925 Combined cohort 
of to 1925 or after 
freedom 

Year x exposure 
Qualitative 9 8.2 18.0 15.3 
Quantitative 1 2.7 2.5 6.5 
(linear x linear) 

Age x exposure 
Qualitative 9 9.1 14.0 13.2 
Quantitative 1 3.3 3.7 3.5 
(linear x linear) 

a reminder that the usual asymptotic approximations for x2 and G2 statistics may not 
apply when the data are sparse and expected values for some cells are small 
(McCullagh, 1986). 

In order to look more systematically for possible trends in the relative risks with age 
and year, we examined a number of additional models with both qualitative and 
quantitative interaction terms. The results, summarized in Table 4.11, do not suggest 
that the relative risks estimated for different exposure durations change systematically 
with either age or year in the pre-1925 cohort. However, even in the absence of a 
definite trend, there is considerable variation in the exposure effects from one calendar 
period to another for the post-1925 cohort. Some caution needs to be exercised, 
therefore, in interpreting the relative risks shown in Table 4.10 for the latter cohort. 

Table 4.12 lists the deviances for several models that we fitted to the full set of 
cohort data in the process of obtaining the results shown in the right-hand columns of 

Table 4.12 Goodness-of-fit (deviance) statistics for a series of models fitted to 
the data on Montana smelter workers: internal estimation of baseline rates 

Model Terms included in the modela Degrees Deviance 
number of 

freedom 

- 

PER 
EXP 
PER + EXP 
PER + EXPO + PER. EXP 
PER + EXPl 
PER + EXPl + PER. EXPl 
PER + EXPl + AGE. EXPl 
PER + EXPl +YEAR. EXPl 

a In addition to 16 terms for stratum (age and year) effects. The variables are coded as follows: PER, 
period of employment (pre- versus post-1925); EXP, four-level factor for duration of exposure; EXPI, binary 
indicator of one or more years of heavylmedium arsenic exposure 
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Table 4.10. (Models 4 and 6 in Table 4.12 correspond to columns 3 and 4 of Table 
4.10.) The first four lines of Table 4.12 show that both period of first employment and 
exposure to heavy-medium arsenic had marked and relatively independent effects on 
risk. The addition of period x exposure interaction terms (model 5) does not 
significantly improve the fit. Relative risks for the three exposure duration levels are 
estimated by model 5 to be 2.43, 1.99 and 3.22 for those first employed before 1925 
and 2.03, 1.63 and 1.62 for those employed afterwards, which results compare well to 
those obtained when the two subcohorts are analysed separately (columns 1 and 2 of 
Table 4.10). 

An important advantage of model fitting is the flexibility it offers for looking at the 
same data in a number of different ways. Examination of the relative risk estimates in 
Table 4.10 suggests that they do not change much either with increasing duration of 
exposure or with period of first employment. In order to study the issue further, we 
constructed a new binary exposure variable EXPl to indicate whether or not a full year 
of heavyjmedium arsenic exposure had yet been experienced, and fitted several 
additional models to the complete set of cohort data. The most interesting aspect of 
Table 4.12 is the comparison of models 5 and 6. Constraining the relative risk 
estimates for arsenic exposure to be constant regardless of period or duration of 
exposure leads to nearly as good a suinmary of the data as allowing them to vary 
(99.2 - 94.6 = 4.6,s degrees of freedom, p = 0.47). The estimated effect of exposure for 
a year or more to heavylmedium levels of arsenic is to increase the subsequent 
respiratory cancer death rate by z factor of 2.2. There is little evidence that this 
estimate of arsenic effect changes with additional exposure or according to the date of 
hire. The improved fit from model 8 suggests, however, that it may depend on age 
(99.2 - 90.0 = 9.2, 3 degrees of freedom, p = 0.03), the estimated relative risks being 
1-68, 3.07, 2.50 and 1.10 for the four age groups. Using EXPl rather than EXP gives 
less evidence for an interaction with calendar year; the separately estimated relative 
risks for the four decades are 2.57, 3.23, 1.92 and 1.76. 

In order to determine whether one or two data records might have had an undue 
influence on the fit, we computed the 'hat7 matrix elements and approximate changes in 
regression coefficients for model 6 of Table 4.12. (This model is also shown in the last 
column of Table 4.10.) GLIM was used to carry out the calculations of h and A) using 
equations 4.14 and 4.15. As expected, the records with the largest effects on the overall 
fit were generally those with the largest person-years of observation: record 17 with 
seven lung cancer cases and over 12 000 person-years gave h = 0.617; record 21 with 
one case and 7151 person-years gave h = 0.634; and record 49 with 89 cases and 8495 
person-years gave h = 0.590. The total value of h summed over all 114 records is 18, 
the number of parameters being estimated. 

Other data records had the largest influence on the estimated effect of arsenic 
exposure as evaluated by the change in the coefficient of EXP1. The maximum change 
occurred with record 56 (9 cases observed versus 4.00 expected), the deletion of which 
would reduce the relative risk associated with heavyjmoderate arsenic exposure by a 
factor of approximately exp (-0.086), i.e., from 2.19 to 2.01. None of these results 
suggests any serious instability in the fitted model. 
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4.6 Incorporating external standard rates into the multiplicative model 

Up to now we have considered that the stratum-specific parameters aci in the model 
equation (4.10), which represent the log death rates for unexposed (xik = 0) individuals 
in that stratum, were unknown 'nuisance' parameters to be estimated internally from 
the study data. The spirit of this approach is similar to that discussed in $83.5 and 3.6. 
It avoids the problems caused by the noncomparability of external standard rates, 
namely, that relative risk estimates for different exposure groups will fail to summarize 
adequately the stratum-specific rate ratios. 

While this ability of multivariate modelling to accommodate the internal estimation 
of baseline rates is desirable, incorportion of external standard rates into the analysis 
may be advantageous in some circumstances. Suppose the baseline rates are specified 
up to a scale factor 8, say Aj = 8A; where the A; are known from vital statistics or 
other sources. The model equation analogous to (4.10) is 

where p = log (8) is a parameter (the grand mean) which represents the log SMR for 
the unexposed (xjk = O), and ac; = log A;. If follows that the mean values E(djk) for the 
number of deaths in the ('j, k) cell satisfy 

so that now the log expected standard deaths are declared as the OFFSET in a GLIM 
analysis, rather than the log person-years (compare equation 4.11). 

One advantage of (4.18) is that it provides in the parameter p an overall measure of 
how the baseline cohort rates compare with those for the general population. Also, 
since the number of parameters to be estimated from the data is reduced considerably 
in comparison to (4.11), there could theoretically be an improvement in the efficiency 
of estimation of the p parameters of most interest. However, this improvement is not 
likely to be great for many practical problems (see Example 4.7). Perhaps more 
important is the fact that when the x variables depend only on exposure (k) and not on 
stratum (j), the likelihood for the model (4.18) is a function of the totals Ok = Cj djk 
and E: = zjnjkAT of observed and expected deaths in each of the K exposure 
categories. (In fact, if a separate parameter pk is attached to each exposure category, 
the SMRk = Ok/Ez are maximum likelihood estimates.) This permits a much more 
economical presentation of the basic data needed for the regression analysis than is 
true for the models considered in the preceding section. For tests of goodness-of-fit, 
however, the full set of data records for all J x K cells are needed. 

Since the p parameters describe how the log SNIR varies as a function of the 
exposures, (4.18) extends the method of indirect standardization into the domain of 
multivariate regression analysis. If P indexes K different exposure classes, the efficient 
score statistic of the hypothesis P = 0 developed from this model corresponds to the 
statistic (3.11) previously proposed for testing heterogeneity of risk. Likewise, for a 
single quantitative regression variable the score test of P = 0 is identical with the trend 
test (3.12). Finally, the maximum likelihood estimate of p in the model where P = 0 is 
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precisely ji = log (O+/E;) = log (SMR), where 0, and E; denote totals of observed 
and expected values. These results provide the essential link between the elementary 
methods of cohort analysis considered in Chapter 3 and those based on the 
multiplicative model. 

The drawbacks of indirect standardization noted earlier of course apply also to an 
uncritical application of the regression model. However, the process of model fitting 
encourages the investigator to evaluate the assumptions of proportionality that are 
essential in order that the estimated /3 parameters have the intended interpretation. 
The usual goodness-of-fit machinery may be applied to validate these assumptions. 
Additional terms may be incorporated in the model to account for confounding of the 
SMR/exposure relationship by age, year or other stratification factors. The estimates 
of the exposure effects as expressed in C) will then start to approximate those obtained 
with the model (4.10), wherein the baseline rates are estimated internally. See $4.8 for 
an example. 

Example 4.3 
To illustrate the process of multivariate modelling using external standard rates, we return to the problem 

of estimating relative risks of respiratory cancer associated with duration of heavy/medium arsenic exposure 
in the Montana cohort. The basic data needed to fit the models consist of just eight records containing 
observed (0,) and expected ( E ; )  numbers of deaths by period of employment and exposure duration (Table 
3.3). 

Table 4.13 summarizes the results of fitting the same models as in Table 4.10, but where the baseline rates 
are obtained from Table 3.2 rather than estimated internally. There is good agreement between the two 
analyses as far as the arsenic effects are concerned, but the pre- versus post-1925 period effect is 
overestimated when the comparison is made using the external standard rates. Goodness-of-fit using external 

Table 4.13 Fitting of multiplicative models to grouped data from the Montana smelter 
workers study: external baseline rates 

Regression 
variable 

Relative risk (exponentiated regression coefficient) and standardized regression 
coefficient (in parentheses) 

- - - - 

Employed Employed Combined cohort 
prior 1925 
to 1925 or after Four levels Two levels 

of exposure of exposure 

Constant (SMR) 
Duration heavy/medium 

arsenic exposure 
(years) 

Under 1 
1-4 
5-14 
15+ 

Pre-1925 employment 
Deviance (G*) 
Degrees of freedom 
Tests of significance 

of exposure based on G' 
Global 
Trend 
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standard rates appears no worse than when the rates are estimated. Note that we have considered the fit of 
the model to the original data from Appendix VI rather than to the summary data in Table 3.3 in order to be 
able to evaluate goodness-of-fit. 

The relative risk estimates shown separately for the two employment periods in Table 4.13 are identical to 
those given in Table 3.3, and the coefficients exp (P) = 2.38 for the pre-1925 cohort or exp (P) = 1.35 for the 
post-1925 cohort also agree with the SMRs of 238% and 135% found earlier for the baseline exposure 
.duration category (under 1 year). This is a numerical confirmation of the fact that the maximum likelihood 
estimates of parameters in these simple qualitative models are log (SMR)s, or differences between log (SMR)s. 

4.7 Proportional mortality analyses 

Regression analyses similar to those already considered for grouped cohort data with 
person-years denominators can also be carried out using information only for persons 
who have died. As mentioned in $3.7, the data are best considered as arising from a 
case-control study in which the persons who die from the cause of interest are regarded 
as the 'cases', while those who die of other causes (or some subset thereof) are the 
'controls'. They are classified into precisely the same J strata and K exposure classes as 
are the cases and person-years in the corresponding cohort analysis. The observations 
in stratum j and exposure class k consist of the number dik of deaths or cases, the total 
ti, of cases and controls (all deaths) and the associated covariables xjk. 

(a) Derivation of the logistic regression model 

As usual we denote the death rate from the cause of interest in the ('j, k) cell by Aik. 
We denote the death rate from the other causes by vik so that the total death rate is 
given by A,, + vjk. Let us suppose that each of these satisfies the multiplicative model 
(4. lo), say 

log vik = yj + xik6. (4.19) 

It follows that the conditional probability pik that a death in'the ('j, k) cell is from the 
cause of interest, given that one occurred at all, is given by 

4 k  - 
Pjk = - exp {(aj - ~ j )  + ~jk(P - a)} 

5 + vik exp {(aj - yi) + xik(P - a)) + 1 ' 

In other words, the probability that a death is from the specific cause satisfies the linear 
logistic model 

Pjk logit pik = log - = (ai - yi) + xik($ - 6). 
1 - p j k  

Furthermore, if the exposures have no effect on the rate of death from the other causes 
(6 = O ) ,  the regression parameters of the covariables xik estimated from this linear 
logistic relationship correspond precisely to the log relative risks of principal interest. 
This provides a formal confirmation of the well-known fact that proportional mortality 
analyses are valid only if the controls are' selected from among deaths due to causes 
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Table 4.14 Fitting of multiplicative models to grouped data from the Montana smelter 
workers study: proportional mortality analysis with internal control 

Variable fitted Relative risk (exponentiated regression coefficient) and standardized regression 
coefficient (in parentheses) 

Employed Employed Combined cohort 
prior 1925 
to 1925 or after Four levels Two levels 

of exposure of exposure 

Exposure duration (years) 
Under 1 
1-4 
5-14 
15+ 

Pre-1925 employment 
Deviance (G2) 
Degrees of freedom 
Tests of significance 

of exposure based on G2 
Global 
Trend 

that have no relation to the exposures. Prentice and Breslow (1978) make the same 
observation in deriving the analogous relationship for continuous data. 

In order to carry out the proportional mortality analysis, we treat the djk as 
independent binomial random variables with denominators tjk and probabilities pjk of 
'being a case' that satisfy the linear logistic model (4.20). Techniques of maximum 
likelihood estimation are applied exactly as described in Chapter 6 of Volume 1. 
Provided that the other causes of death are unrelated to the exposures, the regression 
coefficients may be interpreted as log relative risks in the usual fashion. 

Example 4.4 
The data in Appendix V include the total numbers of deaths observed in each of the 114 categories defined 

by the cross-classification in the Montana smelter workers study. These were analysed using the logistic 
regression model (4.20) with covariables xjk defined just as in the earlier cohort analyses to represent the 
effects of period of hire and duration of moderate to heavy arsenic exposure. Table 4.14 presents the results 
in the same format as for the parallel cohort analyses (Table 4.10). The significance of the estimated 
exposure effects is somewhat reduced in comparison, as might be expected since more restricted data are 
being used. The deviances measuring the goodness-of-fit of the models to the proportional data are 
considerably higher. Note that three degrees of freedom have been lost in comparison with Table 4.10, due 
to the fact that there was no death at all (tjk = 0) in three cells. Nevertheless, the estimated regression 
coefficients for the proportional mortality analysis are quite comparable to those for the full cohort analysis. 
There is a slight reducticn in the estimated effects for period of hire and for 15 or more years of arsenic 
exposure, indicating that these two factors may possibly have increased mortality rates from causes other 
than respiratory cancer. 

(b )  Incorporating standard rates into the proportional mortality analysis 

Suppose now that external standard rates A; and yi* are available for deaths due to 
specific and nonspecific causes in stratum j .  We continue to rely on the basic 
multiplicative model (4.19), except that the unknown log background rates aj and yj 
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are replaced by a + log A; and y + log vf , respectively. Defining pi* = A;/(A; + vf) to 
be the standard proportions of deaths due to the cause of interest in the jth stratum, it 
follows that the probability that a death is due to that cause may be written 

The probabilities of 'being a case7 continue to satisfy the linear logistic model (4.20). 
Now, however, the known variable logit pi* 'offsets7 the model equation, and there is a 
constant term with coefficient ( a  - y). This coefficient may be interpreted as the 
logarithm of the standardized relative mortality ratio (SRMR) for unexposed members 
of the cohort (x = 0 ) ,  where the SRMR is defined as the ratio of SMRs for specific 
versus nonspecific causes (Breslow & Day, 1975). The proportional mortality ratio as 
usually defined, namely the ratio of the number of deaths observed to those 'expected7 
on the basis of the stratum-specific proportions pi*, is of lesser interest for reasons 
discussed in 93.7. 

Example 4.5 
Table 4.15 presents the standard proportions for the 16 age x year strata used with the Montana 

smelter workers data. These were obtained by dividing the standard death rates from respiratory cancer 
(Table 3.2) by the corresponding standard death rates for all causes. The logistic transform of these standard 
proportions was used as an offset in a logistic regression analysis based on equation (4.21). 

Table 4.16 presents the results in what has now become a standard format. Just as observed earlier for the 
full cohort analysis (Tables 4.10 and 4.13), the relative risk estimated for pre- versus post-1925 employment 
is greater when the standardized proportions are used as a basis of comparison than when these same 
proportions are estimated internally. This suggests that the association between the SMR (or SRMR) and 
period of employment is confounded by one or more of the stratification factors, an interpretation that is 
confirmed by more detailed analyses of data from the Montana cohort reported below. Otherwise, the 
agreement between the two types of proportional mortality analyses is quite good. The difference between 
the constant terms for the full cohort analysis (Table 4.13) and the proportional analysis (Table 4.16) 
suggests that the y coefficient in equation (4.21) is nonzero. This implies simply that the SMR for 
nonrespiratory cancer deaths among cohort members with zero covariates is different from unity. 

4.8 Further grouped data analyses of the Montana cohort 

The preceding illustrative analyses of the Montana smelter workers study are limited 
in scope by the requirement that they be based on the relatively small data set 
presented in Appendix V. More realistic analyses were undertaken also by fitting 
multiplicative models to a more elaborate set of grouped data (Breslow, 1985a; 
Breslow & Day, 1985). Respiratory cancer deaths and person-years of exposure were 

Table 4.1 5 Standard proportions of deaths due to respiratory cancer: US 
white males 

- -- 

Age group Calendar year 
(years) 

1938-1 949 1950-1959 1960-1 969 1970-1 977 

40-49 0.021 51 5 0.038246 0.052288 0.070208 
50-59 0.028478 0.055765 0.074081 0.095478 
60-69 0.021 247 0.047646 0.072328 0.0951 59 
70-79 0.009894 0.024390 0.041 900 0.064688 
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Table 4.16 Fitting of multiplicative models to grouped data from the Montana smelter 
workers study: proportional mortality analysis with external control 

Variable fitted Relative risk (exponentiated regression coefficient) and standardized regression 
coefficient (in parentheses) 

Employed Employed Combined cohort 
prior 1925 
to 1925 or after Four levels Two levels 

of exposure of exposure 

Constant (SRMR) 2.02(4.77) 1.13(1.16) 2.22 (6.54) 2.26 (6.83) 
Exposure duration (years) 

Under 1 1 .O 1 .O 1 .O 1 .O 
1-4 2.26 (2.64) 1.90 (3.14) 2.02 (4.1 1 ) 
5-14 2.15 (2.25) 1.49 (1.36) 1.72 (2.45) 2.03 (5.42) 
15+ 2.89(4.37) 1.54(1.11) 2.35 (4.31 ) 

Pre-1925 employment - - 2.07 (5.33) 2.13 (5.74) 
Deviance (GI 55.9 65.6 ,123.8 125.2 
Degrees of freedom 47 56 106 108 
Tests of significance of 

exposure based on G 
Global x:= 21.8 x: = 10.3 x: = 29.8 
Trend 

x: = 28.4 x: = 19.6 x: = 5.3 x: = 23.7 

classified in six dimensions: (i) age in four ten-year intervals; (ii) calendar year in four 
intervals; (iii) date of first employment (pre- versus post-1925); (iv) birthplace (US- 
versus foreign-born); (v) number of years worked in moderate arsenic areas (<I, 1-4, 
5-14, 15+) and (vi) number of years worked in heavy arsenic areas (<I, 1-4, 5+). Of 
the 4 x 4 x 2 x 2 x 4 x 3 = 768 possible cells in this six-dimensional table, only 478 
actually contained any person-years observation. The results obtained in this section 
will serve as a useful point of reference for those based on more complicated methods 
of analysis of continuous data that are considered in the next chapter. 

(a) Preliminary analyses 

Table 4.17 presents respiratory cancer SMRs according to a large number of possible 
risk variables, including several not mentioned above, and without regard to possible 
confounding effects. The time-dependent exposure variables were lagged two years in 
an attempt to estimate the exposure status at the time of disease onset, rather than at 
the time of death, and thus to avoid some of the healthy worker selection problem. 
Tests of significance were based on the heterogeneity statistic (3.11), or the trend test 
(3.12), as appropriate. 

From this preliminary analysis, we conclude that period of first employment, 
birthplace, years since first employed and level of arsenic exposure may each have 
some effect on the age-specific rates. We also note a sharp decline in the SMR with 
calendar year, indicating that the respiratory cancer rates for the cohort as a whole 
have not increased in constant proportion with those for the general population, 
although they have remained consistently higher (see Example 2.4). This serves as a 
warning of a possible lack of comparability of the SMRs for the various exposure 
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Table 4.17 Variations in respiratory cancer SMRs among Montana smelter workersa 

Factor analysed Level Number of ~ ~ ~ ( x 1 0 0 ) ~  Test of 
deaths significanceC 

Period of first 
employment 

Age at hire (years) 

Birthplace 

Time since first 
employedd (years) 

Time since last 
employedd (years) 

Arsenic exposured 

Age at follow-up 
(years) 

Year at follow-up 

1885-1 924 
1925- 1955 

< 24 
25-34 
35+ 

US 
Foreign 

1-14 
15-29 
30+ 

None 
0-9 
10+ 

Light only 
Moderatee 
Heavye 

40-49 
50-59 
60-69 
70-79 

1 938- 1 949 
1950- 1959 
1 960- 1 969 
1970-1977 

a From Breslow (1985a) 
Calculated with reference to US mortality rates for white males by age and calendar year 

CTest for homogeneity of SMRs among categories shown based on equations (3.11) or (3.12) 
Time-dependent exposure variable lagged two years 
Worked in moderate or heavy arsenic exposure area for at least one year 

classes due to confounding with calendar year. Additional confounding may result from 
the high correlation between certain exposure variables. For example, due to the fact 
that follow-up started only in 1938, virtually everyone employed before 1925 
contributed person-years only to the last two categories of years since first 
employment. 

Table 4.18 presents an analysis of variance of the log SMRs based on the model 
equation (4.18) and various indicator regression variables. This shows clearly that the 
effects of duration of employment are easily explained by the correlation with period of 
first employment, whereas those for arsenic exposure are not. Selection of the variables 
for the final analysis was based on such considerations. 

( b )  Regression analyses 

Table 4.19 presents further multiple regression analyses based on equations (4.18) 
(first two columns.) and (4.11) (last column). When calendar year is included in the 
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Table 4.18 Analysis of variance based on a multiplicative model for 
SMRs: respiratory cancer deaths in Montana smelter workersa 

Source of variationb Degrees of freedom Chi-square 

PERIOD of hire and 
TlME since first employment 

PERIOD alone 
TlME after PERIOD 
TlME alone 
PERIOD after TlME 

PERIOD and ARSENIC level 
PERIOD alone 
ARSENIC after PERIOD 
ARSENIC alone 
PERIOD after ARSENIC 

a From Breslow (1985a) 
See Table 4.17 for definition of factor levels 
Not statistically significant; all others have p < 0.0001 

SMR analysis, the regression coefficient for period of hire is much closer to that 
obtained when baseline rates are estimated internally. This confirms that part of the 
difference between the SMRs for those hired before and after 1925 is due to the 
confounding effects of calendar year on the ratios of cohort to standard death rates. 
Appropriate adjustment is made either by including calendar year as a covariable in 

Table 4.19 Regression coefficients f standard errors in the multiplicative model: two 
methods of analysis of grouped data from the Montana smelter workers studya 

Regression Method of analysis 
variable 

External standard rates (SMR analysis) Internal estimation 
of baseline rates 

Without calendar With calendar by age and year 
year effects year effects 

Constant (a) 0.256 f 0.092 0.581 f 0.219 - 
Hired before 

1925 0.564 f 0.133 0.441 f 0.143 0.444 f 0.1 51 
Foreign born 0.492 f 0.142 0.407 f 0.1 47 0.445 f 0.1 53 
Heavy arsenic 

1-4 years 0.170 f 0.310 0.1 99 f 0.303 0.1 93 f 0.305 
5+ years 1.067 f 0.230 1.076 f 0.230 1.069 f 0.230 

Moderate arsenic 
1-4 years 0.587 f 0.166 0.604 f 0.166 0.600 f 0.166 
5-14 years 0.253 f 0.242 0.262 f 0.242 0.259 f 0.242 
15+ years 0.678 f 0.204 0.683 f 0.205 0.689 f 0.206 

Calendar period 
1950-1 959 -0.075 f 0.216 
1 960- 1 969 -0.235 f 0.21 5 
1970-1 977 -0.480 f 0.228 

- -- -- 

a From Breslow and Day (1985) 
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the SMR analysis or else, and what is almost the same, by conducting a parallel 
internally controlled analysis in which background rates are estimated from the data. If 
age, year and age x year interactions are all included as covariables in the SMR 
analysis, the externally and internally controlled analyses yield identical results as far as 
the p coefficients are concerned. The difference in the coefficients for foreign-born 
between the second and third columns suggests some possible residual confounding by 
age. 

4.9 More general models of relative risk 

One possible drawback to the multiplicative model (4.10), at least when applied with 
quantitative exposure variables, is that it leads to relative risk functions that increase 
exponentially with increasing exposure: RR(x) = exp (xp). Apparently, some risks do 
increase this fast. For example, our analyses of the Ille-et-Vilaine case-control study in 
Volume 1 showed that alcohol had such an effect on the risk of oesophagael cancer. 
This example is atypical, however, and in most epidemiological studies the rate of 
increase would be less dramatic (see Chapter 6). In Ille-et-Vilaine, the relative risk of 
oesophageal cancer was approximately proportional to the square root of the daily 
dose of tobacco. 

(a) Transformations of dose 

Many of the quantitative dose-response relations actually observed in cancer 
epidemiology approximate a power relationship of the form 

Here xo>O is a small 'background7 exposure level introduced to account for the 
spontaneous incidence of cancer among the unexposed. This relative risk function may 
be approximated by first transforming the dose to z = log (x + x,) and then fitting the 
multiplicative model (4.10) in the form 

The choice xo=  1 is not uncommon as a 'starter7 dose since it yields the usual 
RR(x) = 1 at the baseline level x = 0. xo may also be treated as an unknown parameter 
and the best fitting value, found by trial and error or some other more systematic 
technique. However, the model is then no longer a log-linear one, and determination 
of the variances and covariances of the parameter estimates may be seriously 
complicated. There is a high degree of correlation between the estimates of xo and P, 
as might be expected from the fact that the slope of the relative risk function (4.22) at 
x = 0 is given by RRf(0) = Since small variations in xo often have little effect on 
the overall goodness-of-fit, it is usually adequate simply to select a nominal background 
dose a'priori and to proceed assuming that x, is fixed. 
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(b) Additive relative risk model 

Certain formulations of multistage theory and other more general considerations 
lead to relative risk functions that are linear or quadratic in measured exposures, for 
example RR(x) = 1 + px or RR(x) = 1 + bx + yx2 (Berry, 1980; Thomas, D.C., 1981). 
These are special cases of a general class of models of the form 

ajk = exP (ai){l + ~jkP) (4.24) 

which we shall call the additive relative risk model. One drawback of these is that the 
range of the p parameters is necessarily restricted by the requirement that xjkP > -1 
for all values of xjk, since negative relative risks would otherwise result. This suggests 
that, wherever possible, the regression variables xi, be coded so that they have positive 
coefficients. As usually happens for models in which there is a range restriction on the 
parameters, the log-likelihood function is skewed and not at all like the quadratic, 
symmetric log-likelihood of the approximating normal distribution. Estimates of the 
parameters may be unstable, and standard errors that are determined from the usual 
likelihood calculations may be unhelpful in assessing the degree of uncertainty. (This 
contrasts with additive models for absolute risk, where t statistics perform reasonably 
well. See Example 4.2.) Substantial differences may exist in practice between the 
observed and expected information measures, and score tests based on the former may 
give seriously misleading answers (Storer et al., 1983). Irregularities in the likelihood 
surface may frustrate the search for maximum likelihood estimates. The usual iterative 
procedures can diverge unless starting values in the immediate vicinity of the maximum 
likelihood are available. 

In view of these complications, we do not recommend the additive relative risk 
model for routine applications. It often suffices to transform the exposure variables and 
to approximate the additive relative risk model by a multiplicative model in the 
transformed variables. Nevertheless, one sometimes finds that the extra work involved 
in fitting the model (4.24) results in a substantially better fit to the data or is necessary 
in order that the regression coefficients have precisely the desired interpretation. 

(c) Fitting general models to Poisson rates 

The additive relative risk model (4.24) is a generalized linear model that involves a 
composite link function (Thompson & Baker, 1981): two separate linear functions 
(linear predictors) of the explanatory variables are related to the mean values 
E(djk) = nikajk. Since it is a nonlinear regression model for Poisson rates, however, it 
still may be fitted using GLIM or other programs that facilitate iterated reweighted 
least-squares analyses (Frome, 1983). However, the implementation is more involved 
than for the multiplicative (4.16) or power (4.15) models considered earlier. 

In their most general form Poisson regression models may be written 

where the asterisks on p* and x; indicate that these are the expanded vectors of length 
J + p  that involve the J stratum indicators and associated coefficients q in addition to 
the exposure variables. Maximum likelihood fitting of such models can be programmed 
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as a series of weighted least-squares analyses involving dependent variables 

weights 

and independent variables 

that are recalculated at each stage of iteration using fitted rates 

5 = g(x;; fi*) 

based on the current parameter estimates fi*. The change in the estimated coefficient 
going from one iteration to the next is given by 

where Z is a matrix with rows zjk and W is a diagonal matrix with diagonal elements 
y k .  

Programming the likelihood calculations in this fashion leads to regression diagnos- 
tics that help evaluate the goodness-of-fit and stability of the model just as we saw 
earlier for the multiplicative model and the power family (4.16). The diagonal terms hjk 
of the 'hat' matrix obtained at convergence of the iterative procedure, 

provide information about the general influence of the data in cell (j, k) on the fit. The 
specific changes in the estimated regression coefficients occasioned by deletion of those 
data are approximated by the vector 

A family of general relative risk models that is intermediate in generality between 
(4.24) and (4.25) is given by 

where the relative risk function is specified by the power relation 

This yields the additive relative risk model (4.24) at p = O  and the standard 
multiplicative model (4.10) at p = 1. Thomas, D.C. (1981) proposed another family 
RR(x) = exp (px$){l + XP)'-~, which also contains both additive and multiplicative 
forms. These two families, which specify how the exposure effects combine to yield a fac- 
tor r(x; $), which then multiplies background, should be contrasted with the family (4.16), 
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Table 4.20 GLlM macros for fitting the relative risk model specified by equation (4.28) to grouped 
cohort data 

$sub porr ! macros for power transform relative risks 
! MACRO PORR REQUIRES THE FOLLOWING INPUT DATA 
! r = NUMBER OF CASES (BINOMIAL NUMERATOR) 
! n = NUMBER OF CASES + CONTROLS (DENOMINATOR) 
! %I = POWER TRANSFORM USED IN RELATIVE RISK (%I = 0 FOR LOG) 
! strt = FACTOR WITH %i LEVELS THAT CONTAllVS STRATUM INDICATORS 
! %i = NUMBER OF LEVELS FROM STRATUM INDICATOR STRT 
! b = INITIAL VALUES FOR PARAMETERS (LENGTH %I + 8) 
! x l  . . . x8 = REGRESSION VARIABLES CODED TO HAVE POSITIVE RELATIVE RISK 

CODE XI = 0 FOR THOSE THAT ARE NOT TO BE FITTED. 
! 
! ON EXIT THE FOLLOWING QUANTITIES ARE AVAILABLE 
! 
4 p = PREDICTED PROBABILITY OF 'BEING A CASE' 
! h = DIAGONAL TERMS FROM 'HAT' MATRIX 
! cs = STANDARDIZED RESIDUALS (CHI-SQUARE TYPE) 
! %vc = MATRIX OF VARIANCES AND COVARIANCES OF ESTIMATES 
! 
$mat ftnl ! macro to fit nonlinear relative risk model 
$cal % k = 10 : %c = 0.0001 ! set convergence criteria 
$err n ! 
$wei w $yvar y $while %k porr $dis e $ext %vl $cal h = %vl*w ! 
$cal cs = (r - n*p)/%sqrt(w) : %t = %cu(cs*cs) ! 
$cal %u = 2*%cu(r*%log(r/(n*p)) + (n - r)*%log((n - r)/(n*(l - p)))) ! 
$pri 'chi-square' %t 'deviance' %u $ ! 
$del %pe y w %fv z l  22 23 24 25 26 27 28 xb th db %vl $$endmac ! 
$mac porr ! rr(x) = ((1 + xb)**%l - I)/%! 
$cal xb = b(%i + I )*XI + b(%i + 2)*x2 + b(%i + 3)*x3 + b(%i + 4)*x4 + b(%i + 5)*x5 
+ b(%i + 6)*x6 + b(%i + 7)*x7 + b(%i + 8)*x8 ! 
$cal xb = %if(%le(xb, O), 0.0001, xb) ! 
$cal %a = 1 + %eq(%l, 0) $switch %a pow log $ 
$cal xb = (1 + xb)**(%l - 1) ! 
$cal p = %exp(th) : p = p / ( l  + p) ! 
$cal w = n*p*(l - p) : y = (r - n*p)/w ! 
$cal z l  = XI *xb : 22 = x2*xb : 23 = x3*xb : 24 = x4*xb : 25 = x5*xb : 26 = x6*xb ! 
$calz7 = x7*xb : 28 = x8"xb ! 
$sca 1 ! 
$fit s t r t -%gm+zl  + z 2 + ~ 3 + ~ 4 + ~ 5 + ~ 6 + ~ 7 + ~ 8  $ext %pe$cal db=%pe : b =  b + d b  ! 
$pri %k 'estimates' b ! 
$use cchk ! check for convergence 
$$endmac 
$mac pow $cal th  = b(strt) + ((1 + xb)**%I - 1)/%1 $$endmac ! 
$mac log $cal th  = b(strt) + %log(l + xb) $$endmac ! 
$mac cchk ! convergence check 
$cal db = %if(%le(db, O), -db, db)/b ! 
$cal db = %if(%le(db, %c), 0, 1) : %t = %cu(db) ! 
$cal %k = %k - 1 : %k = %if(%le(%t, O), 0, %k) $$endmac ! 
$return 
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which specifies how exposure and background effects combine. Table 4.20 contains 
a series of GLIM macros, based on the general iterated least-squares method- 
ology just described, that were used to fit the class of models (4.28) in the illustra- 
tive examples. The multiplicative model with p = 1 is easily fitted using standard features 
of GLIM, and convergence is guaranteed. A recommended procedure is to fit 
this model to get starting values of $* = (a, $) for use with nearby values of p, say 
p = 0.9. One then uses the $* values obtained at convergence with p = 0.9 to start the 
procedure with p = 0.8, and so on until the additive relative risk model p = 0. 
However, due to the general problems with additive and other nonmultiplicative 
relative risk models mentioned above, it may prove impossible to implement this 
procedure with some data sets once p decreases beyond a certain point. Comparison of 
deviances for various values of p allows one to judge which (if either) of the additive or 
multiplicative relative risk models provides a reasonable description of the data, just as 
in Example 4.2. Thompson and Baker (1981) describe an alternative methodology for 
fitting models with composite link functions, which may be implemented using the 
OWN feature of GLIM to fit (4.28). Pierce et al. (1985) have developed a flexible 
program to fit models in which the rates are expressed as a sum of products of 
multiplicative and additive terms. 

Example 4.6 
In order to illustrate the fitting of the additive relative risk model, we consider another set of data from the 

British doctors study (Doll & Peto, 1978). Table 4.21 presents numbers of lung cancer deaths and 

Table 4.21 Numbers of lung cancers ( 0 )  and person-years of observation (P-Y) by age and 
smoking level among British male doctorsa 

No. of Average Age in years 
cigarettes number 
smoked smoked 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 
per day 

0 0 
P-Y 

2.7 0 
P-Y 

6.6 0 
P-Y 

11.3 0 
P-Y 

16.0 0 
P-Y 

20.4 0 
P-Y 

25.4 0 
P-Y 

30.2 0 
P-Y 

38.0 0 
P-Y 

a From Doll and Peto (1978) 
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Table 4.22 Results of fitting several relative risk models to the data on lung 
cancer in British doctors: internal estimation of age effectsa 

Model Equation for relative Degrees Deviance Parameter Standard 
no. risk (RR) or excess of estimate error 

risk (ER) as a function freedom 
of daily no. of 
cigarettes ( x )  

Separate RR each 
dose group 

RR = exp (px) 
RR = exp (px + yx2) 

Separate ER each 
dose group 

ER =Bx 

(see Fig. 4.6) 

a From Breslow (1985b) 

approximate person-years denominators classified by age and number of cigarettes smoked per day. Data for 
ages 80 and above were excluded from consideration, since the diagnosis is often uncertain at such advanced 
ages, while data for persons who reported smoking more than 40 cigarettes per day were excluded on the 
grounds of being unreliable and uncharacteristic. This latter exclusion, made also by Doll and Peto (1978), 
has a substantial impact on the dose-response analyses and has been the subject of some controversy. 

Table 4.22 presents the results of fitting a variety of models to these data. In addition to the smoking 
parameters, estimates of which are shown in the table, each requires estimation of eight aj parameters to 
represent the effects of age. The first four models are multiplicative. Smoking is treated qualitatively in 
model 1, with a separate relative risk being estimated for each smoking level. In models 2 and 3, the 
quantitative dose variable x = 'average number of cigarettes smoked per day' and then its square are 
introduced into the exponential term. Model 4 is the power relative risk model specified by equation (4.23), 
and models 5 and 6 are additive relative risk models as specified by (4.24). 

Except for model 2, all the relative risk models (models 1-6) fit the observed data reasonably well. Model 
4 fits best among those that require only a single parameter to describe the relative risk. The fact that a 
quadratic term significantly improves the fit of the additive relative risk model (X :  = 58.36 - 51.03 = 5.35; 
p = 0.02) was interpreted by Doll and Peto (1978) as consistent with the notion that both an early and a late 
stage in the carcinogenic process are affected by cigarette smoke (see Chapter 6). 

Figure 4.6 shows the relative risks estimated from four of the models. By definition, all relative risks are 
constrained to equal unity at zero dose. However, since most lung cancer deaths occur among smokers, the 
regression coefficients are largely determined by a comparison of rates for different classes of smokers, rather 
than by a comparison of smokers with nonsmokers. The fact that nonsmokers form the baseline category 
thus explains the apparently aberrant behaviour of the estimated relative risk curve for the power model. 
Were a more typical category used as a baseline, say, smoking of 20 cigarettes per day, all the curves would 
pass through unity at that point and would appear to be in better harmony. See the parallel discussion in $6.9 
of Volume 1. 

Certain drawbacks of the additive relative risk model are evident from Table 4.22. The standard errors for 
the regression coefficients are quite large in comparison with those for the multiplicative model, to the extent 
that t statistics of the form r = ~ I S E ( ~ )  seriously understate the true statistical significance of the smoking 
effect. The r statistics for the multiplicative models 2 and 4 are r =0.0853/0.0063 = 13.5 and r = 
1.187/0.123 = 9.7, each highly significant, while that for model 5 is only r = 1.130/0.510= 2.2. The contrast 
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Fig. 4.6 Three relative risk (RR) functions fitted to data on lung cancer rates from 
the British doctors study 
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between the maximum log-likelihood functions for the multiplicative and additive relative risk models (Fig. 
4.7) is also striking. The P parameter in the additive relative risk model is less well determined, as indicated 
by the flatter log-likelihood, and there is substantial skewness. These problems may be largely overcome, 
however, by reparametrizing the model as Ajk = a j ( l  + ePxk) (Thomas, D.C., 1981), or as discussed by 
Barlow (1986). 

The last two models in Table 4.21 are additive models. Model 7 has the form Ajk = a;. + P,, where a 
separate excess risk Bk is estimated for each dose category. Model 8 is A,, = aj + Px,, where the excess risk is 
assumed to be linear in dose. Neither fits the observed data at all well. In fact, as soon as one moves much 
away from the relative risk models 1-6, for example, by considering the power family (4.16) with p departing 
slightly from 0, the goodness-of-fit declines substantially. Thus, although there may be some doubt about the 
specific form of relative risk as a function of dose, smoking does appear to act multiplicatively on the 
age-specific rates. 

(d) Incorporating external standard rates 

External standard rates A; are incorporated into the additive relative risk model by 
writing it in the form 

where fl = q / O  is the parameter of interest. This is formally equivalent to the additive 
model (equation (4.16) with p = I), except that there is only one stratum parameter 0  
and all the regression variables are pre-multiplied by the known rates A;. Thus, it may 
be fitted directly in GLIM without recourse to the specialized macros given in Table 
4.20. 

Although there are fewer parameters to estimate, (4.29) has the same drawbacks as 
(4.24) with regard to instability of the P coefficients. Indeed, it is clear from the 
relation p = v/O that much of the instability in this model is due to the extremely high 
dependence between the estimated relative risks and the estimates of the baseline 
rates, or between the relative risks and the scale factor 0  used to adjust those rates. 

Example 4.7 
The same series of models considered in Example 4.6 was fitted to the British doctors data shown in Table 

4.21, except that the baseline age-specific rates were assumed to be proportional to = (ti - 22.5)4.5 x 
lo-", where tj is the midpoint of the jth age interval. Here, tj - 22.5 represents the approximate duration of 
exposure to the putative carcinogen in the jth age group and the exponent 4.5 represents a compromise 
between five and six stages in the multistage theory of carcinogenesis (Doll & Peto, 1978). Thus, the external 
'standard' rates are based on theoretical concepts, rather than on national vital statistics as in some earlier 
examples. 

The results, shown in Table 4.23, are little different from those in Table 4.22, where the age effects were 
estimated directly from the data. One would expect that the standard errors of the regression coefficients of 
the smoking variables might be reduced somewhat, reflecting an increase in precision stemming from the 
stronger assumptions made about the background rates. Theoretical calculations (Stewart & Pierce, 1982; 
Breslow, 1985b) indicate that such an increase would be expected if age were a strong confounder, in the 
sense that average smoking levels changed markedly from one age group to the other. While there is some 
evidence for such confounding in these data, it is evidently not strong enough that knowledge of the 
background rates, at least up to a constant of proportionality, would contribute a significant advantage in 
terms of increased precision. 

If the additive relative risk model is expressed in terms of the parameters 8 and I), as in (4.29), we 
estimate 6 = 0.837 f 0.356, 6 = 0.954 f 0.741 and ~ o v ( 6 ,  6 )  = -0.00686. A test of the smoking effect is 
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Table 4.23 Results of fitting several relative risk models to the data on lung cancer in 
British doctors; age effects assumed proportional to (age-22.5)4.5 x lo-" 
- - - -  

Model Equation for relative Degrees Deviance Parameter Standard 
no. risk (FJR) or excess of estimate error 

risk (ER) as a function freedom 
of daily no. of 
cigarettes (x) 

Separate RR each 
dose group 

RR = exp (px) 
RR = exp (px + yx2) 

Separate RR each 
dose group 

ER =px 

From Breslow (1985b) 

thus given by t = $/sE($) = 12.9, of the same order of magnitude as with the multiplicative models. 
However, the test based on fl = $/8 = 1.141 divided by its standard error {Var (8)f12 - 2 Cov (6, $)B + 
Var ($))"2/8 = 0.516 yields a t statistic of only 2.2. This suggests that a large part of the instability in fl in 
the additive relative risk model is its high correlation with parameter estimates (here 6) that represent the 
background rates. Further confirmation of this interpretation is given in Figure 4.8, which shows contour 
plots of the deviances obtained by varying the two parameters in the model equation (4.29). Although the 
minimum deviance of 60.0 occurs at fl = 1.141 (Table 4.23, model 5), nearly identical fits are obtained for a 
wide combination of parameter values (8, p). The corresponding Figure 4.9 for the multiplicative model 
(Table 4.12, model 4) shows that, while there is still a strong dependence between the parameters 
representing relative risk and background, it is not so extreme as to lead to serious instability. 

(e) General risk functions for proportional mortality 

The relative risk models considered for proportional mortality analyses in 84.7 may 
also be generalized using the techniques of this section. In place of (4.19) we suppose 

where r(x; p )  denotes the general relative risk function for the cause of interest and 
where we have explicitly assumed that death rates for other causes are not affected by 
the exposures. The probabilities pik of 'being a case' then satisfy 

logit pik = (ai - y,) + log r(xjk; P). 
As shown above, a flexible and convenient family of models for the log relative risks 

(although by no means the only one that could be suggested for this purpose) is the 



Fig. 4.8 Contour plot of deviances (G2) when fitting the additive relative risk model with external standard rates to lung 
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family 

which contains both additive (p- 0) and multiplicative (p = 1) relative risk functions 
as special cases. Breslow and Storer (1985) illustrate the fitting of such general relative 
risk functions to grouped data from actual case-control studies. The same techniques 
can be used in proportional mortality analyses. 

4.10 Fitting relative and excess risk models to grouped data on lung cancer deaths 
among Welsh nickel refiners 

Appendix ID presents a detailed discussion of the background and design of the 
study of Welsh nickel refinery workers. Summary data on nasal sinus cancer deaths 
(Appendix VI) were considered briefly in Example 4.1 in order to illustrate some 
features of the fitting of multiplicative models to grouped data. Published data from 
this study provided us in Chapter 3 with examples of the use of internal standard- 
ization. With the approval of Kaldor et al. (1986), we undertake in this section a more 
comprehensive analysis of grouped data on lung cancer deaths in order to contrast the 
results obtained with relative and excess risk models. In the next chapter, continuous 
variable modelling techniques are applied to the study of rates of nasal sinus cancer 
deaths that occurred among these same workers. 

(a) Basic data and summary statistics 

Table 4.24 was compiled by Peto, J. et al. (1984) to summarize the mortality 
experience through 1981. The excess mortality was due largely to nasal sinus and lung 
cancers and was essentially confined to the 679 men employed before 1925, to whom 
attention is henceforth confined. Appendix VIII lists basic data for each of the 679 men 
that were used for all the grouped and continuous variable analyses reported in this 

Table 4.24 Mortality experiences (0, observed; E, expected) of Welsh nickel refinersa 

Period first Number Cancers Other causes All 
employed of men causes 

Lung Nasal Other Circulatory Respiratory Other 
sinus disease disease 

Before 1925 679 0 137 56 67 220b 63 60 603 
E 26.86 0.21 59.44 194.76 62.39 75.74 419.38 

a From Peto, J. et a/. (1984) 
Including one death in which nasal sinus cancer was an underlying cause 
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monograph. There are slight differences between this data set and that analysed by 
Peto, J. et al. (1984), Kaldor et al. (1986) and others, due to the continual process of 
data editing. Thus, the person-years of observation, expected numbers of deaths and 
relative risks shown in Tables 4.24 and 6.8 and in our own summaries (e.g., Table 4.25) 
differ very slightly. However, these differences have no material effect on the results or 
interpretation. 

Six basic pieces of information are available for each subject: (i) ICD (7th revision) 
cause of death; (ii) exposure, defined as the number of years worked in one of seven 
'high-risk' job categories prior to the start of follow-up (see below); (iii) date of birth; 
(iv) age at initial employment; (v) age at start of follow-up; and (vi) age at death for 
those who died, age last seen for those lost to observation, or age at end of study for 
those withdrawn alive. Nasal sinus cancer deaths are coded 160 under the 7th ICD 
revision, and lung cancer deaths are 162 or 163. Further dates of interest, such as date 
entered follow-up and date of initial employment, are obtained by adding the 
corresponding ages to the date of birth. 

The nasal sinus cancer, lung cancer and total (all causes) death rates for England and 
Wales by five-year intervals of age and calendar time, listed in Appendix IX, were used 
to compute the expected numbers of deaths and the values of an age-dependent 
covariable, consisting of the standard death rate for each subject, at specified points in 
time. 

( b )  Construction of the exposure index 

Company records were used to classify each year of an individual's employment into 
one of ten categories, depending on the area of the plant in which he worked on 1 
April of that year. Such data were available for 82% of the 9354 calendar years during 
which the 679 subjects were employed prior to 1925. Kaldor et al. (1986) used a 
synthetic case-control approach to analyse the relation between work area and 
respiratory (nasal sinus and lung) cancer risk. They identified five exposure categories 
that appeared to be significantly related to the risk of both cancers: calcining I,  
calcining 11, copper sulphate, nickel sulphate and furnaces. (See Table 6.7.) On this 
basis, they developed an exposure index equal to the number of calendar years 
employed in these categories. A contribution of a half rather than a full year was given 
for the first and last calendar year of such employment. In contrast to the Montana 
study, there was no overlap of exposure and follow-up periods and hence no change in 
the exposure index with follow-up. This simplified the analysis considerably. 

Due to the circularity involved in construction of the exposure index, the excess risks 
may be overstated slightly. Another possible deficiency is that the index does not 
account for the time or age at which 'high-risk' exposures were received. Any 
difference between high-risk exposures received during 1905-1909 and those received 
between 1920 and 1924 is ignored. Furthermore, the use of date of initial employment 
to represent the start of exposure may obscure the fact that relevant exposures were 
primarily received in high-risk areas. One might consider an analysis of two exposure 
duration variables - years since initial employment and years since initial employment 
in a high-risk area. However, due to the undoubtedly high correlation between them, 
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estimation of their separate effects would be problematic. Hence, time since first 
employment is used as the only time-dependent variable in the ensuing analyses. 

(c) Grouping of data for analysis 

From the data in Appendix VIII we constructed a four-dimensional table of 
observed numbers of lung cancer deaths, person-years of observation, and expected 
numbers of lung cancer deaths, and likewise for nasal sinus cancer. The dimensions 
were (i) age at first employment (AFE) in four levels; (ii) calendar year of first 
employment (YFE) in four levels; (iii) the exposure index (EXP) in five levels; and (iv) 
time since first employment (TFE) in five levels. The calculation used Clayton's 
algorithm (Appendix IV) to combine the 679 original records with the national death 
rates for England and Wales. At one point it was necessary to add two more 
dimensions to the table, namely, current age and calendar year in the quinquinquennia 
for which the national rates were available. Person-years in each cell were multiplied 
by the corresponding standard rate and then summed to give expected numbers of lung 
cancer deaths. Only 242 of the 4 x 4 x 5 x 5 = 400 cells in the four-dimensional table 
had some person-years of observation time available. The data for these 242 cells are 
presented in.Appendix VII so that the reader can more easily verify our results. 

(d) Fitting the relative risk model 

Table 4.25 shows the person-years and observed and expected numbers accumulated 
for each factor level. The sixth column of the table presents estimated relative risks 
(ratios of SMRs) for each factor, adjusted for the remaining three factors. These were 
estimated from a multiplicative model (equation (4.18)) that incorporated the standard 
rates and 14 binary regression variables to represent the simultaneous effects of the 
four factors. An overall SMR of 8.92 was estimated for the baseline category, namely 
for the period up to 20 years since date of hire for workers hired under 20 years of age 
before 1910 with no time spent in a high-risk job. The lung cancer relative risk 
increased fourfold with increasing exposure, but declined markedly as TFE advanced 
beyond 20 years. The smaller changes in the SMR with age and year of initial 
employment were not statistically significant (Table 4.26). 

(e) Fitting the excess risk model 

Due to the ageing of the cohort and the secular increase in cigarette smoking, the 
national rates used to determine the SMRs were themselves climbing rapidly with 
increasing follow-up. Thus, it is unclear from the decline in the SMRs with TFE what 
the temporal evolution of absolute excess risk may be. In order to investigate this 
question, Kaldor et al. (1986) employed a model for excess risk that had been proposed 
earlier by Brown and Chu (1983), namely, 

Ajk = AT + exp ( a  + xkS). 
Here, exp ( a )  represents the excess mortality rate for someone with a standard set of 
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Table 4.25 Fitting of relative and excess risk models to data on lung cancer mortality among 
Welsh nickel refiners 

Risk 
factor 

Level Person-years No. of lung cancer Relative Excess 
at risk deaths risk mortality 

(ratio ratio 
Observed Expecteda of SMRs) (EMR) 

Age at <20 years 3089.2 
first 20-27.5 7064.9 
employment 27.5-35.0 371 1.9 
(AFE) 35.0+ 1364.9 

Year of 1 900- 1 909 1951 .O 
first 1910-1914 2904.5 
employment 1915-1919 2294.0 
( Y E )  1920-1924 808 1.3 

Exposure 0- 7738.8 
index 0.5-4.0 4905.1 
(EXPI 4.5-8.0 1716.9 

8.5-1 2.0 601.2 
12.5+ 269.9 

Time since 0-19 years 2586.1 
first 20-29 4777.5 
employment 30-39 4329.4 
(TFE) 40-49 246 1.4 

50 + 1076.4 
Baseline SMR: 
Baseline excess mortality (per 100 000 person- 
Chi-square goodness-of-fit (deviance; 

227 degrees of freedom) 

a Based on rates for England and Wales by age and calendar year (Appendix IX) 

covariable values (xk = O ) ,  and exp (xkP) represents the excess mortality ratio (EMR), 
i .e. ,  the factor by which the specific exposures modify the excess rate. 

The model defined by (4.32) may be fitted easily with the GLIM OWN facility for 
user-defined models, just as (4.18) is fitted using standard features of the program. 
Table 4.27 lists the GLIM commands needed to read the 242 data records from 

Table 4.26 Evaluating the significance of variations in the SMR and 
EMR for each risk factor: lung cancer mortality among Welsh nickel 
refiners 

Risk Degrees Effect on relative mortality Effect on  excess mortality 
factora of (SMR difference) (EMU difference) 

freedom 
Chi-square p value Chi-square p value 

AFE 3 2.96 0.40 7.35 0.06 
YFE 3 3.77 0.29 3.34 0.34 
EXP 4 21.25 0.0003 24.26 0.0001 
TFE 4 42.42 <0.0001 17.25 0.002 

aAFE, age at first employment; YFE, year of first employment; EXP, exposure index; 
TFE, time since first employment 
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Table 4.27 GLlM commands needed to produce the results shown in Table 4.25" 

$UNITS 242 $DATA AFE YFE EXP TFE CASES PYR EXPT $ 
$FORMAT 
(4(X, F2.01, 11X, F3.0,8X, 2(X, F12.6)) 
$C READ IN DATA FROM FORTRAN UNIT 1 - APPENDIX VII 
$DINPUT 1 80$ 
$C DECLARE OFFSET TO BE LOGARITHM OF EXPECTED NUMBERS OF CASES 
$CAL EXPT = EXPT/1000 $ 
$CAL LEX = %LOG(EXPT) $OFF LEX $ 
$WAR CASES $ERR P $ 
$FAC 242 AFE 4 YFE 4 EXP 5 TFE 5 $ 
$C FIT MUL-TIPLICA-I-IVE MODEL 
$FIT AFE + Y FE + EXP + TFE $ 
$DIS M E $ 
$C EXTRACT PARAMETER ESTIMATES AND CONVERT INTO RELATIVE RISKS 
$EXT %PE $CAL RR = %EXP(%PE) $LOOK RR $ 
$C NOW CONTINUE WITH EMR MODEL 
$OFF $ 
$MAC M1 $CAL %FV = %EXP(%LP)*PYR + EXPT $$ENDMAC 
$MAC M2 $CAL %DR = 1 ./(%FV - EXPT) $$ENDMAC 
$MAC M3 $CAL %VA = %FV $$ENDMAC 
$MAC M4 $CAL % W = %IF(%LT(%YV, .5), .0000001, %YV) $ 
$CAL %Dl = 2.*(%W*%LOG(%W/%FV) - (%W - %FV)) $$ ENDMAC 
$OWN M1 M2 M3 M4 $FIT. $REC 10 $FIT. $ 
$DIS M E $EXT %PE $CAL RR = %EXP(%PE) $LOOK RR $ 
$STOP 

aAdapted from Kaldor et al. (1986) 

Appendix VII and produce the SNIR and ENIR estimates shown in Table 4.25. The 
excess risk was estimated to be approximately 30 lung cancer cases per 100 000 
person-years for workers in the baseline category. It also increased sharply with the 
exposure index. By contrast to the pattern in the relative risk, however, the excess risk 
increased to a maximum some 40 years from date of hire and subsequently declined. 

Brown and Chu (1983) note that one will sometimes wish to adjust the standard rates 
A; used in modelling the excess risk in order to account for the healthy worker 
selection bias or other systematic departures of baseline mortality rates in the study 
group from the national averages. They suggest Ajk = OAT + exp (e + xkP)  as a 
generalization of (4.32) and arbitrarily set 8 = 0.8 or 8 = 1.2 in order to gauge the 
sensitivity of the p parameter estimates to variation in the assumed background rates. 
We used the ANIFIT program of Pierce et al. (1985) to estimate 8 by maximum 
likelihood and found 8 = 1.087. Since there was scarcely any improvement in fit over 
the model with 8 = 1, it appears that the national rates do a reasonable job of 
representing background lung cancer mortality for the Welsh cohort. 

Although the SMR and EMR models happen to fit this particular set of data equally 
well, they lead to markedly different estimates of lifetime risk for typical workers. 
Kaldor et al. (1986) estimated the lifetime (to age 85) probability of lung cancer for 
light smokers who were born in 1900, who started work at the nickel refinery in 1920, 
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and who accumulated an exposure index of 10. The probability was 0.27 under the 
multiplicative model and 0.58 under the additive one. For a heavy smoker, the 
estimated lifetime probability was 0.65 for the multiplicative model and 0.61 for the 
additive one. 

Section 6.6 presents a further discussion of these results in terms of the multistage 
theory of carcinogenesis. 
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CHAPTER 5 

FITTING MODELS TO CONTINUOUS DATA 

Grouping of cohort data into a multidimensional classification of casesldeaths and 
person-years by categories of age, calendar period, cumulative exposures indices and 
other fixed or time-varying factors is a convenient way of reducing a frequently massive 
set of information into a form suitable for statistical analysis. It encourages the 
investigator to examine disease rates calculated within each cell of the cross- 
classification, making plots of rates against quantitative exposure measurements for 
purposes of model development. Inferences regarding disease mechanisms are made 
possible by examining the data for trends in excess or relative risk measures according 
to ordered categories of age at onset of exposure, duration of exposure, or time since 
cessation of exposure. By assigning average duration or dose levels to these categories, 
quantitative regression models may be fitted for purposes of risk assessment. 
Validation of the fitted models is facilitated by the calculation of standardized 
differences (residuals) between observed and fitted numbers of cases in each cell. 

We believe that such grouped data analyses are generally the method of choice for 
cohort analysis. Given the inherent limitations of cohort data in terms of the number of 
cases and the accuracy of recorded exposure variables, more elaborate approaches such 
as those embodied in the continuous data analyses that we now describe are perhaps 
best limited to special situations. A possible exception is the use of the method of 
case-control within a cohort sampling (85.4) to conduct preliminary exploratory 
analyses in order to select variables for a final analysis, which is carried out using either 
grouped or continuous data techniques. 

Restrictions on grouped data analyses 

A key assumption of the grouped data approach is that disease rates are constant 
within each cell of the multidimensional cross-classification. While clearly an ap- 
proximation, this assumption can be made more plausible by refining the classification, 
for example, by using five-year rather than ten-year intervals of age and calendar time. 
However, there are obvious restrictions on the number of different variables that can 
be considered simultaneously and on the number of levels or categories into which 
each variable is factored. When most cells contain few, if any, cases, the previously 
cited measures of goodness-of-fit based on comparisons of observed and expected 
(fitted) numbers of cases have little if any value. Practical difficulties arise in coping 
with large numbers of cells and estimating large numbers of parameters. 
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Scope of Chapter 5 

This chapter develops methods of continuous cohort data analysis that utilize age, 
time and exposure measurements in their original form rather than after partitioning 
the data into discrete categories. Many different explanatory variables may be 
considered simultaneously in the same analysis. To  a large extent, the methods 
presented here are applications and refinements of survival analysis techniques 
originally proposed by Cox (1972) and developed further in texts by Kalbfleisch and 
Prentice (1980) and Cox and Oakes (1984), which should be consulted for a more 
detailed development. We first review, in 85.1, the fundamental concept of a disease 
incidence rate, considered as a continuous function of age and/or time. We describe 
how model equations already developed to express the effects of exposure on disease 
rates calculated from grouped data are adapted to the continuous case. Section 5.2 
introduces the 'partial likelihood' methodology for estimating regression coefficients in 
models in which the exposure variables are assumed to act multiplicatively on the 
background rates. It contains a detailed, worked example for the simplest situation - 
that of a single, binary (but age-dependent) exposure variable. In 85.3 we develop 
nonparametric estimates of unknown baseline disease rates, both for homogeneous 
samples and for heterogeneous ones in which the heterogeneity is expressed by 
covariables in the multiplicative model. When the background rates are determined 
from vital statistics or are assumed to have a specific parametric form, the same 
techniques provide a nonparametric description of how relative mortality rates (SMRs) 
may vary continuously with time since first exposure, time since cessation of exposure, 
or with some other relevant time variable. Plots of baseline or relative mortality 
functions against one or more time-varying factors are shown to be quite useful as a 
means of informally examining model assumptions. In 85.4, we present details about 
the 'case-control within a cohort' or 'synthetic retrospective study' sampling technique 
that was introduced in Chapter 1 as a device for conducting efficient, exploratory 
analyses of continuous cohort data. This section also presents analytical methods for 
gauging the influence of individual cases or controls on the estimated regression 
coefficients. In sections 5.5 and 5.6 these methods are applied systematically to 
the studies of Montana smelter workers and Welsh nickel refinery workers, and 
comparisons are made with results of grouped analyses of these same data sets already 
presented in Chapter 4. 

5.1 Fundamentals of continuous data analysis 

Continuous data methods rest fundamentally on the concept of an instantaneous 
disease rate considered as a continuous function of a continuous time variable t (see 
Chapter 2 of Volume 1). Let A(t) denote the rate for a given subject at time t such that 
A(t) dt is the probability of disease diagnosis or death in the time interval (t, t + dt), 
given that he was alive and/or disease-free at its start. We assume there is a 
background rate function A,(t) that represents the degree of risk for someone with no 
exposure or, in some cases, a standard set of exposures. The object of the data analysis 
is to construct models that describe how the exposure variables' x(t), which may 
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themselves vary continuously and depend on time, act to modify the background rates 
AO(t). Exposure effects are expressed parametrically in terms of a vector P of unknown 
parameters, and the statistical problem is one of estimating P in the presence of the 
unknown nuisance function AO(t). The most widely studied of such semi-parametric 
structures is the proportional hazards model of Cox (1972), in which A(t) = 

AO(f exp {x(t)P) - 
An important generalization is to consider several background rate functions A,(t), 

one for each of S strata (s = 1, . . . , S). The strata may also be time-dependent, and we 
denote by s(t) the stratum at which the subject finds himself at time t. The exposure 
variables are generally assumed to act in the same way (e.g., additively, multiplica- 
tively) on each of the background rates, regardless of stratum, and a single set of P 
parameters is used to describe their effects. Further generalizations are possible to 
situations in which the background rates vary continuously with two or more 
continuous time variables, but these methods have not yet been fully developed and 
are not presented here. 

(a) Choice of basic time variable 

Substantial flexibility is available with the continuous variable models, since different 
choices can be made for the basic time variable t. Candidates for t include time on 
study, time since first employment, age and calendar year. Once t has been specified, 
its effects on the background mortality rates are estimated nonparametrically in AO(t). 
The effects of the remaining time-dependent factors are then modelled in regression 
variables x(t). Stratification of the sample into several subgroups, each with its own 
background mortality rate function, allows even greater flexibility. The choice of t is 
important, and the investigator will usually want to think carefully about the goals of 
the analysis before deciding which time variable to model nonparametrically and which 
to account for by means of regression coefficients. 

Several of the analyses we have carried out have used t =age as the fundamental 
time variable. Secular trends in the age-specific background rates are accommodated 
by stratification of the sample into five- or ten-year intervals of calendar year or 
birthdate. One rationale for this choice of t is the fact that age is generally the most 
critical determinant of cancer rates. This suggests that one allow the greatest possible 
flexibility in their age dependence. The effects of various exposure indices that change 
with time on study are accommodated in the regression variables. 

In other examples, particularly those involving external standard rates or in which 
the background age-specific rates are known to have a simple parametric form, we 
have examined the evolution of excess or relative risk as a nonparametric function of 
t = time since first exposure. Sometimes, one may wish to conduct several parallel 
analyses with different choices of t, in order to determine the most appropriate 
parametric form for each one prior to its inclusion in subsequent analyses as a 
time-dependent regression variable. However, some caution must be exercised in order 
that an inappropriate choice for t not obscure the very effects that one is looking for. 
For example, suppose that major attention is focused on a cumulative exposure 
variable x(t) that is highly correlated with time on study. If time on study is selected as 
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t, some of the effects that rightfully should be quantified in the regression coefficient of 
the exposure variable will instead be hidden in the estimate of the baseline risk 
function Ao(t). 

( 6 )  Construction of exposure functions 

One potential advantage of continuous variable methods is their ability, at least in 
principle, to make full use of the time history of exposures that may be recorded for 
each individual in the study. Estimates of annual exposure increments may be available 
from periodic readings of radiation dosimeters, from personal records on dates of 
transfer between job sites, or periodic examination of blood, urine or tissue specimens. 
A wide variety of exposure functions may be constructed from such data. 

We first considered an approach that is of interest primarily for historical reasons. 
Suppose z(u)du denotes the increment in exposure estimated to occur in the time or 
age interval (u, u + du). Several investigators have constructed regression variables 
representing time-weighted cumulative or average exposures in the form 

where to is the age at entry to the study and w(u) is a suitable weight function. If 
w(u) = 0 or 1, according to whether u L or u > L years, x(t) represents a lagged 
cumulative exposure such that increments received during the preceding L years have 
no effect on risk (e.g., Gilbert & Marks, 1979). By defining w(u) = min(1, ulL), 
exposures may be phased in linearly over a period of L years before taking maximum 
effect. Berry et al. (1979) set w(u) = (1 - exp(-Au))lA as a method of time-weighting 
accumulating exposure to asbestos fibres that allows for their elimination from the 
lungs at rate A. By taking w(u) to be a probability density, one can express the concept 
of a biological latent interval as the random duration of time between an exposure 
increment and its effect on disease (Knox, 1973). A typical choice for w is the density 
function of a log-normal distribution, with mode and variance possibly estimated from 
the data. The 'working level month' used in the study of Rocky Mountain uranium 
miners is defined in precisely this way (Lundin et al., 1979). We explore this method in 
55.5, using data from the Montana smelter workers study. 

One cause for concern regarding the uncritical use of cumulative exposure 
measurements is that they may fail to separate intensity and duration of exposure 
adequately. For example, radiation risks are commonly assessed in terms of lifetime 
excess cancer cases per cGy of exposure per million population, without consideration 
of dose fractionation or timing (Committee on the Biological Effects of Ioniziqg 
Radiation, 1980). While this practice may have some empirical justification in radiation 
carcinogenesis, its widespread adoption in other situations is surely to be deplored. 
Consider, for example, the lung cancer risk at age 60 among two smokers - one who 
consumed 10 cigarettes per day since age 20 and the other 20 cigarettes per day since 
age 40. The total number of cigarettes is the same, namely 20 pack-years or 
20 x 20 x 365 = 146 000 cigarettes. However, data from the British doctors study and 
elsewhere suggest that the lung cancer risk is approximately proportional to dt4.5, 
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where d is the number of cigarettes smoked per day and t is years of smoking (Doll & 
Peto, 1978; see also Example 4.7 above). This suggests that the 20-pack-year smoker 
who started at age 20 has 0.5(2)4.5 = 11.3 times the lung cancer risk of the 20-pack-year 
smoker who started at age 40. Analysing the two individuals in the same category of 
'cumulative dose' would be a serious error. 

The choice of exposure variables used in continuous data analyses can have a major 
influence on the results and interpretation and on any quantitative risk assessments that 
are made. It is important, therefore, to demonstrate the goodness-of-fit of the resulting 
model and to evaluate its sensitivity to perturbations in the weight function or model 
equation. Even when analysing data using continuously varying baseline age rates, it is 
often prudent as a first step in the analysis to define the regression variables so that 
they represent discrete levels of intensity and duration of exposure, just as was done 
for grouped data. Examination of the results of such descriptive analyses can then 
suggest a possible role for a more quantitative approach. 

We suggest that initial explorations of the data be conducted using categorical binary 
variables that represent different levels of each of the factors of primary interest: age at 
onset of exposure; intensity of exposure averaged over the period of accumulation; 
duration of exposure; fractionation; and time since last exposure. Trends in excess or 
relative risk measures according to each of these factors are of inherent interest and 
may help to elucidate possible underlying mechanisms. In Chapter 6, we consider how 
such descriptive analyses may be interpreted in terms of mathematical models of 
carcinogenesis. Some authors (Thomss, D.C., 1983; Brown & Chu, 1987) have 
successfully fitted biomathematical models directly to data from cohort studies, but, 
often, the quality of the data does not warrant the considerable effort that must be 
made to achieve a good fit, nor can competing models be clearly differentiated in terms 
of the weight of evidence to support them. 

(c) Some model equations 

Models are available to express the effect of regression variables x(t) on background 
rates Ao(t) that parallel those for the grouped data analyses considered in Chapter 4. 
Thus, one has 

for an additive effect and 

for a multiplicative one with multiplicative combination of risk variables (Cox, 1972). 
More general relative risk models may be written 

where, for example 

(1 + 2)" - 1 
log r(z) = j 

P 
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as in (4.24). This yields the multiplicative model (5.3) at p = 1, whereas the additive 
relative risk model 

occurs in the limit as p tends to 0. More general relative risk functions r{x(t); P) may 
be constructed in which the explanatory variables x and the parameters P do not 
combine in the usual linear regression fashion. Frome (1983) considers models of the 
form 

for his analysis of grouped data on lung cancer and smoking from the British doctors 
study. He also estimates the baseline rates as a parametric function 

rather than leaving them unspecified, as suggested here. 
An alternative to (5.2), in which the excess risk is a multiplicative function of the 

covariables, is given by 

Pierce and Preston (1984) consider parametric models such that A(t) is expressed as a 
sum of products of linear and multiplicative terms, 

where the explanatory and regression variables are partitioned x = (x,, yl, x,, y,, . . .) 
and p = (PI, y,, p2, y2, . . . ). This includes (5.6) as a special case, provided that Ao(t) is 
modelled parametrically. They implement a similar generalization of the relative risk 
mode1 (5.5). 

(d) External standard rates 

External standard rates are incorporated into each of these model equations just as 
they were for grouped data. One simply replaces the unknown functions Ao(t) in 
(5.2)-(5.6) by the quantity 8A*(t) where A*(t) is the standard background rate at time t 
for a subject, depending upon his age and the calendar period, and 8 = exp ( a )  is an 
unknown scale parameter used to adjust the standard rates so as to give the best fit to 
the background rates actually observed for the cohort. (Alternatively, especially in the 
context of (5.2), Ao(t) might be replaced by 8 + A*(t) whereby an additive constant is 
used to adjust standard to background.) The known rates A*(t) are typically obtained 
from national vital statistics, but occasionally they may come from theoretical models 
of the disease process, as in Example 4.7. Explicit equations for models analogous to 
(5.2), (5.3) and (5.5) are thus 

A(t) = A*(t)' exp {a + x(t)P) (5.8) 
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and 

The continuous time version of the excess mortality ratio model considered in 54.10 is 

A(t) = OA* (t) + exp {x(t)p). 

The availability of information on background rates is of particular importance when 
estimating excess risks using (5.7) or (5.10). We are unaware of any method that may 
exist for fitting (5.6) when Ao(t) is left completely unspecified. Such models may be 
fitted when the data are grouped, as we saw in the last chapter, or when Ao(t) is 
expressed in terms of a small number of unknown parameters, as suggested by Pierce 
and Preston (1984). A fully nonparametric treatment of background rates is currently 
limited to the multiplicative models. 

In addition to the disease rates A(t) of primary interest, an important conceptual role 
is played in the sequel by a function ~ ( t )  that represents the instantaneous rate at 
which subjects are lost from view during the study. Such loss may be caused by death 
due to 'competing' illnesses, emigration from the study area, or other reasons. We 
make the important assumption that Y does not depend on p, meaning that the timing 
and nature of deaths due to other diseases or the withdrawal of persons from the study 
carry no information on how exposures affect the disease of interest. The fitted 
statistical model represents a 'smoothing' of the observed variation in disease rates 
according to exposure and other explanatory variables, in the presence of competing 
causes of death. Conclusions about exposure effects apply only to the conditions that 
prevail in the particular study and should not be expected a priori to hold in a 
population subject to other types of intercurrent mortality (Prentice et al., 1978). The 
question as to whether or not the results can be generalized must be argued on a 
broader basis. These caveats apply equally, of course, to results obtained with more 
elementary methods. 

5.2 Likelihood inference 

Just as was true for grouped data analyses, statistical inference'about the parameters 
of interest in models for continuous data requires construction of an appropriate 
likelihood function. Denote by ti the age (or time) at which the ith subject ends the 
study, and define Si as 1 or 0 according to whether death or diagnosis has or has not 
occurred at ti. Also denote x( t )  = 1 or 0 according to whether he is or is not under 
observation at age t, and let tp = inf {t: x( t )  = 1) denote the age at entry. General 
considerations suggest that the contribution of the ith subject to the likelihood function 
is 

A~(ti)v~-"(ti) exp x(u)  {A&) + vi(u)> du 

where subscripts i have been added to the rate functions A and Y defined earlier to 
indicate that they usually vary from one subject to another. The exponential term 
represents the probability of being disease-free between ages t! and ti. For subjects 
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who develop the disease of interest (ai = 1), the leading term &(ti) represents the 
conditional probability of death or diagnosis at ti, given that it has not occurred earlier; 
for those who do not (ai = O), the leading term vi(ti) represents the conditional 
probability of loss. A rigorous derivation of this result requires consideration of the 
product integral of the instantaneous probabilities of death or disease at each age, 
conditional on past history (Kalbfleisch & Prentice, 1980; Johansen, 1981). Since vi is 
assumed to be free of 9, its contribution to the likelihood factor is usually ignored. 

The only unknowns for models that incorporate standard rates are the scalar 
8 = exp ( a )  and the vector 9. In this case, the log-likelihood function for the entire set 
of cohort data may be written 

where Ai(t; a ,  p) is specified by any one of the equations (5.7)-(5.10) or an analogous 
model formula. Formal proofs that maximum likelihood estimates based on this 
expression have the usual properties of consistency and asymptotic normality, with 
covariances estimable from the inverse information matrix, may be based on the large 
sample theory of counting processes (Borgan, 1984). Likelihood analyses based on 
(5.12) have been implemented for the multiplicative model (5.8) by Breslow et al. 
(1983), who approximate the integrals and their first and second derivatives by a 
summation in which the time-dependent covariables are evaluated annually for each 
subject. Some results of these analyses are presented in 05.5. 

(a) Poisson models for grouped data 

A formal justification for the Poisson model (4.7) used for grouped data analysis is 
obtained by specializing (5.11) to discrete time. Suppose that there are J x K cells or 
states and that Ai(t) = Ajk if the ith subject is in state (j, k) at time t. This condition 
holds for grouped data models, in which the background rates are given by Ai(t) = Aj 
and the regression variables by xi(t) =xi, for subjects in state (j, k) at that time. 
Summing up the log-likelihood contributions from (5.11) over all subjects in the study 
leads to the total log-likelihood (Holford, 1980), 

where djk are the numbers of deaths that occur while a subject is in the (j, k)th state 
and njk is the total observation time (person-years) in that state. This is precisely the 
log-likelihood for the Poisson distribution on which the statistical methods of Chapter 4 
were based, and each of the models (5.2)-(5.10) reduces to its discrete counterpart as 
considered there. 

( b )  Partial likelihood for multiplicative models 

The likelihood for models (5.2)-(5.6) involves the unknown nuisance functions A,(t), 
the presence of which considerably complicates estimation of P. Cox (1972, 1975) 
solved this problem for the. subgroup of multiplicative models (5.3)-(5.5) by 
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constructing an appropriate 'partial likelihood', in which the contribution of the 
nuisance function is eliminated and only fi remains. His approach is easily generalized 
to accommodate several background nuisance functions A,(t) in a stratified analysis. 
Suppose, for example, that the ith individual is known to have died (or been 
diagnosed) at age ti in calendar period (stratum) si. Denote by Ri the set of all subjects 
'at risk' of death at that same age and period, meaning those who were alive and under 
observation just prior to age ti and who were in calendar period si at that age. The 
conditional probability that the ith subject died, given that one death occurred among 
those in the risk set R,, is thus 

Summing up the 1ogari.thms of such contributions for all subjects who die or develop 
disease yields the log partial likelihood 

where r denotes the relative risk function. If several deaths (or disease cases) occur in a 
given risk set Ri, each one contributes a term to (5.13). The expression then serves as 
an approximation to the log partial likelihood, which is adequate so long as the deaths 
form only a small fraction (e.g., under 5%) of the total number in each risk set (Peto, 
R., 1972; Breslow, 1974). 

O.ther methods are needed when the times of death or diagnosis are grouped, so that 
a substantial number di of cases occurs among those in the risk set at a specified ti. Cox 
(1972) also proposed a linear logistic model for discrete survival data, such that each 
risk set yields a partial likelihood contribution proportional to 

r{xq(ti); P} 
E 1 1 r (ti) ; b) ' 

where the numerator is a product of relative risks overthe di cases, and xv(ti) denotes 
the covariable vector for the jth member of R,. Assuming that the risk set also contains 
gi noncases, the denominator is a summation over all ni . Cdi ways of selecting a 
'control sample' containing di of the ni = di + gi individuals in R,. Each control sample 
is specified by a set of indices I = {l,, I,, . . . , Id;) chosen from the numbers (1, 2, . . . , 
ni) that identify the 'risk set' members. The labels (1, 2, . . . , di} are assumed to 
correspond to cases. Although the large number of terms in the denominator sum 
renders its calculation. unfeasible if both di and gi are large, recursive algorithms 
developed by Gail et al. (1981) and Storer et al. (1983) permit this approach to be used 
when there is a moderate number of cases - say, no more than 20 or so - in each risk 
set. 

For the special case r(x; P) = exp (xp), Andersen and Gill (1982) show that the usual 
likelihood calculations based on differentiation of (5.13) yield asymptotically normal 
estimates, the variances and covariances of which may be estimated from the observed 
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information matrix. Prentice and Self (1983) derived analogous results for models (5.4) 
and' (5.5), in which the relative risk function is given by r(x; p) = 1 + xp or a more 
general expression. As already mentioned, satisfactory nonparametric methods of 
estimation for the additive models (5.2 and 5.6) have not yet been developed. 

Example 5.1 
Hutchinson and colleagues (1980) conducted a historical cohort study of nearly 1500 women treated for 

benign breast disease to determine their subsequent incidence of breast cancer. A later analysis of these data 
related each woman's history of treatment with hormones (oestrogens) to breast cancer risk (Thomas, D.B. 
et al., 1982). The data used here for illustrative purposes were compiled by Persing (1981) from 1353 cases 
with a histological confirmation of the initial benign lesion. 

A simple tabulation of the data, shown in Table 5.1, leads to a relative risk estimate for hormone users 
versus nonusers of (25 x 499)/(33 x 522) = 0.72, and suggests a possible protective effect of the oestrogens. 
However, it ignores the person-years of observation denominators and, more importantly, the relationship 
between the age at which each woman started to take oestrogens and the age at which she developed, or was 
at risk of developing, breast cancer. Oestrogen use and age were strongly related, since the cohort had been 
assembled during a 35-year surgical practice over which time there were marked changes in the use of 
oestrogens for contraception or treatment of post-menopausal symptoms. 

A partial likelihood analysis was undertaken with t = age in order to account for the age dependence of 
both exposure and disease risk. Table 5.2 lists the integral ages ti at which diagnoses of breast cancer were 
made and the composition of the risk sets for 1036 women for whom it was known whether or not and, if so, 
at what age, oestrogen use began. A woman contributed to the risk set Ri provided that her benign breast 
disease had been diagnosed before age ti, so that she was under observation, and provided also that she had 
not yet died, been lost to follow-up or otherwise removed from risk of breast cancer, for example, by having 
a double mastectomy. 

In this example, there is a single, age-dependent binary covariate xl(t) indicating whether or not a woman 
has received oestrogen. It is defined as 1 for all women in Ri who received hormone prior to ti, i.e., for the 
women in columns labelled H1 in Table 5.2, and 0 for the remaining women. Note that a woman's covariable 
value may change from xl(t) = 0 to xl(t) = 1 as she is followed forward in the study. A parallel analysis in 
terms of a fixed (i.e., not age-dependent) covariable, taking values 1 or 0 according to whether a woman ever 
received oestrogen (columns H1 and H2), yields fallacious results, since some women are then analysed as 
'exposed' at ages before the exposure actually began. 

Suppose that the relative risk function is defined by r(x; p )  =exp (xp), so that the relative risk is 
q = exp (PI) for prior exposure {xl(t) = 1) and 1 = exp (0) for no prior exposure {xl(t) = 0). The data in 
each risk set are conveniently arranged in a 2 x 2 table of exposed versus nonexposed and cases versus 

Table 5.1 Distribution of 1353 women treated for 
benign breast disease according to history of oestro- 
gen use and development of breast cancera 

- - 

Oestrogen Breast cancer 
use 

Yes No Total 

Yes 25 522 547 
No 33 499 532 
Unknown 8 266 274 

Total 66 1287 1353 

a From Persing (1981), from data originally collected by Hutchinson et 
a/. (1980) 
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Table 5.2 Composition of the risk sets at each age of diagnosis of breast cancer 

Age= f. Total number Cancer casesa Non-cancer casesa 
i n  risk 
set Ri H 1 H2b no H H 1 H2 no H 

a HI, hormone (oestrogen) users at ages less than o r  equal to  f; H2, hormone users at ages greater than 
f.; no H, hormone nonusers 

bThis column contains only zeros, since women who developed breast cancer at age f were removed 
from further study 

noncases. For example, at age ti = 52 we have 

Exposed Nonexposed 

Cases 4 (4)  

Noncases 573 (gi) 226 Cf, - e,) E 
Total 228 Cf,) 349 577 (ni )  

The contribution to the numerator of the partial likelihood (5.14) for the risk set at age ti =52  is thus 
q212 = q2. More generally, if ei of the d ,  cases are exposed, the contribution is qei. If a 'control' sample { I , ,  
. . . , ldi)  in the denominator yields u exposed and n, - u nonexposed, its contribution to the denominator is 
q". Since the number of such samples with exactly u exposed is 
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the total contribution of the risk set R, to the partial likelihood is proportional to 

For example, the risk set at age ti = 52 years yields the contribution 

For this special case of a single binary exposure variable, the partial likelihood (5.15) is identical to the 
exact conditional likelihood used for estimation of relative risk in a series of 2 x 2 tables compiled from 
case-control data ($7.5 Volume 1; Breslow, 1976). The computer program LOGODDS, presented in 
Appendix VI of Volume 1, may be utilized for this special problem, although some modifications are needed 
to accommodate the large binomial coefficients that occur in (5.15). 

The full partial likelihood is a product of terms of the form (5.15), one for each line in Table 5.2. 
Maximizing this, we find 6 = 1.80. The Mantel-Haenszel test of the hypothesis Ho: I) = 1 ($4.4, Volume I), 
known also as the logrank test (Peto, R. & Peto, 1972), yields = 4.41 (p  = 0.02). We conclude that 
oestrogen use significantly increased the breast cancer risk in this population of women with benign breast 
disease. However, part of the observed association might be related to the confounding effects of other risk 
factors that were increasing with calendar time. Both oestrogen use and breast cancer incidence were rising 
during the course of the study, and inclusion of year of birth as an additional covariate in the inodel reduced 
the estimated relative risk for oestrogen to 6 = 1.49, = 1.82 (Thomas, D.B. et al., 1982). 

Repeating the analysis in terms of the improper (fixed) exposure covariate yields 6 = 0.70, = 1.59 (NS), 
a result rather close to that for the summary data in Table 5.1 where we ignored age altogether. Careful 
examination of Table 5.2 shows the reason for the discrepancy. When averaged over the 23 risk sets, with 
weights proportional to their size, the proportion of women who used oestrogen at any time (HI + H2) is 
0.38 for cases and 0.52 for noncases. However, the average proportions of women who had started using 
oestrogens previously are instead 0.38 and 0.29. In other words, when cases and noncases are compared in 
terms of whether or not they had a history of exposure at the same age, the cases are more likely to have 
used the hormone. More noncases were observed during the later ages and calendar periods, at which 
oestrogen treatment was more common. 

We tested whether or not the relative risk for oestrogen use varied with age by including an age-dependent 
covariable x2(t) = xl(t) x (t - 55) in the model A(t) = Ao(t) exp {P1xl(f) + P2x2(t)). Here, I) = exp(P,) 
denotes the relative risk at age 55, whileexp {P2(t - 55)) is a multiplicative factor that measures the change 
in the relative risk for younger or older women. Alternatively, we could have set x2(t) = xl(t) x log (t/55), in 
which case the relative risk would be modelled as a power function ~ ( t / 5 5 ) ~ ~ .  With the addition of x2(t) to 
the model, the contributions to (5.15) become 

Using once again a modification of the program LOGODDS, we find fil = 0.614 f 0.285, fi2 = 0.017 f 0.029 
and a score statistic for testing p2 = 0 of X ;  = 0.32 (NS). Thus, there is no evidence for a trend in the relative 
risk with age. 

An explicit formula for the score statistic used to test P2 = was given in Volume 1, equation (4.31). 
Contrary to the assertion made there, however, the estimates q of relative risk inserted in equations 4.30 
and 4.31 of Volume 1 must be maximum (partial) likelihood estimates in order that these statistics have 
asymptotic chi-square distributions under the null hypothesis. Modifications of the equations are needed 
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when the Mantel-Haenszel estimate I$,, is used in place of the maximum likelihood estimate. (See Breslow 
et al. (1984) for the modification needed in the test for trend, and Tarone (1985) for the corresponding global 
test of homogeneity of relative risk.) 

The goodness-of-fit of models fitted to grouped cohort data may be evaluated 
relatively easily by comparing the observed and fitted numbers of deaths in each cell of 
the cross-classification, by plotting the adjusted residuals (4.13) in various ways and by 
examining the summary chi-square (4.6) or deviance (4.12) goodness-of-fit statistics. 
Indeed, an advantage of this approach is that one is almost forced to examine how well 
the model predicts the outcome in each cell. Unfortunately, no such safeguard is built 
into the continuous data analysis, and extra steps are needed to determine whether or 
not the model provides a reasonable summary of the observed data. 

One of the most important methods for examining the goodness-of-fit of the 
proportional hazards model was introduced in Example 5.1. It involves adding to the 
model age- or time-dependent covariables that represent the interaction of exposure 
effects with those of age or time. Such covariables typically take the form y(t) = 
x(t) log (tlc) or y(t) = x(t)(t - c), where c is a constant representing a standard age and 
x = x(t) represents an exposure that may or may not be time-dependent. The sign of 
the regression coefficient estimated for y(t) indicates whether the trend in relative risk 
associated with a given amount of exposure is increasing or decreasing with age. 
Additional interaction variables with quadratic terms (t - c ) ~  or log2 (tlc) may be 
needed if the relative risk first rises and then declines with age. 

An alternative approach that may be implemented without explicit recourse to 
age-dependent covariables is to carry out separate analyses for each of two or three age 
intervals by dividing the risk sets into groups depending on ti. Comparison of 
regression coefficients for the same exposure variables in different age groups indicates 
the direction of any trend, and comparison of the maximized partial likelihood for the 
combined analysis with the sum of the maximized partial likelihoods for the separate 
analyses provides a formal test of the statistical significance of the differences in the 
coefficients. 

A third approach that retains some of the features of the grouped data analysis is to 
define a partition of age into J intervals and exposure into K categories. Separate 
binary covariables are then defined for each of the JK cells in the cross-classification. 
The score test for the addition of these covariables to the regression models compares 
the observed and expected numbers of cases in each cell. However, since the expected 
values are based on the model fitted to continuous data, the simple C ( 0  - E ) ~ / E  
chi-square formula does not apply (Schoenfeld, 1980; Tsiatis, 1980). It is necessary to 
estimate the covariances of the 0 - E differences in order to carry out the test. 

A graphical approach to the evaluation of goodness-of-fit of proportional hazards is 
to partition the sample into a small number of (possibly time-dependent) categories of 
persons with similar exposure histories. Separate estimates of the age-specific disease 
incidence functions are modelled for each one. When plotted against age on a 
semilogarithmic scale, these curves should stay roughly a constant distance apart if the 
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hypothesis of proportionality holds. This procedure is illustrated below with the benign 
breast disease data. (See especially Figure 5.2.) 

A variation of this graphical analysis is helpful when the exposure variables are 
numerous, and estimation of a separate age incidence function within categories of 
exposure is not feasible. One defines a partition of the data into K subgroups on the 
basis of the estimated relative risk function r{x(t); i)). If x = x(t) depends on age, 
therefore, so will subgroup membership. Separate estimates of the age-incidence 
curves for each subgroup, say, ik( t )  for k = 1, . . . , K, are compared with the fitted 
age-incidence curves rkio(t), where rk is the average relative risk in the kth subgroup 
and io(t) is the background age incidence function estimated from the total cohort. 
Breslow (1979) gives an illustration using data from clinical trials. 

The addition of exposure X age interaction variables to the basic equation is also 
applicable as a means of assessing goodness-of-fit when the background rates are 
assumed to be proportional to external standard rates or are modelled parametrically. 
A graphical method for evaluating the proportionality assumption is illustrated in 
Figures 5.4 to 5.6. 

(d) Nonmultiplicative models 

Partial likelihood unfortunately provides only a partial solution to the problem of 
fitting continuous models to cohort data. The approach is not applicable if the basic 
model is additive, for example, or has any other form in which the exposure effects do 
not act multiplicatively on the background rates. It is necessary in such circumstances 
to assume that the background rates are given by some formula that depends on 
parameters a and to base the inference on the general log-likelihood (5.12). This is 
precisely what one does when the background rates are assumed to be known up to a 
constant 8 = exp (a) of proportionality, or when explicit parameters are used to 
represent background rates by age and year in grouped data analyses. 

(e) Notes on computing 

Example 5.1 is a very special case in that it involves only a single binary covariable. 
This allows the data to be represented as a series of 2 x 2 tables and allows use of 
programs for the regression analysis of log odds ratios in 2 x 2 tables in the analysis. 
Most problems, including analyses of the data on Montana smelter and on Welsh 
nickel workers, presented below, involve multiple discrete and continuous regression 
variables x(t). Here, the computing problems are considerably more complex. One 
must either compute and store the covariable history x(t) for each individual at times 
t = ti for each of the risk sets Ri in which he appears, or else supply a set of covariable 
function subroutines that calculate the requisite covariables, at different times, from 
basic data available for each subject. An exception is the additive relative risk model 
(5.9, for which only the covariable values for the cases and the average of the 
covariables for the other risk-set members need to be stored (Gilbert, 1983; Prentice & 
Mason, 1986). For large cohort studies, it is generally not possible to store all the data 
needed in the central memory of a computer. This means that a separate pass through 
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the data files is made .at each iteration of the procedure used to find the maximum 
partial likelihood estimate fi. The program must also be capable of accommodating 
time-dependent stratification, whereby the stratum index for each subject is available 
from stored data, or from function subprogram calculations, for each risk set in which 
he appears.' 

5.3 Nonparametric estimation of background rates 

Nonparametric estimates of cumulative disease incidence or death rates based on 
continuous data sampled from a homogeneous population were introduced in Volume 
1 (52.3) with an illustrative application to data on mouse skin tumours. Virtually 
identical techniques are used to estimate cumulative disease rates from cohort data. 
Suppose that the distinct times or ages at which deaths or cases occur are 
0 < tl < t2 < . < t I .  Denote by di the number of cases at ti and by ni = di + gi the total 
size of the risk set Ri, i.e., the number of cohort members under observation at ti. Let 
A(t) = J-6 A(s) ds denote the unknown cumulative rate in the general population. The 
usual estimate of A, often ascribed to Nelson (1969), is 

Some motivation for this formula is provided by the fact that the differentials 

which equal the observed number of deaths divided by the approximate person-years 
observation time in the age interval (ti-,, ti), are obvious estimates of the correspond- 
ing instantaneous rates. 

The variance of A(t) is estimated using Greenwood's (1926) formula 

This is the continuous data analogue of equation (2.2) for the standard error of a 
cumulative or directly standardized rate calculated from grouped data. When con- 
sidered as a random function of t, A is approximately distributed as a Gaussian 
stochastic process with mean A(t) and a covariance function C(s, t) = Cov {h(t), &s)) 
that is estimated for t <s  by (5.17) (Breslow & Crowley, 1974). This fact has enabled 
statisticians to develop simultanous confidence bands for A(t), or the corresponding 
'survival7 function S(t) = exp {-A(t)), over an interval of time or age (Gillespie & 
Fisher, 1979; Hall & Wellner, 1980). 

The same approach may be used to obtain separate estimates of cumulative hazard 

'Pat Marek of the Fred Hutchinson Cancer Research Center (see Peterson et al., 1983) developed the 
program that we used for the illustrative analyses presented here. This program is currently.being simplified 
and adapted to run on microcomputers. 
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or mortality within each of several subsets or strata. One simply classifies the di deaths 
and ni risk-set members according to the particular stratum in which they appear at 
time ti. As we noted earlier, plots of the estimated &(t) for different strata are useful 
for examining .the consistency of the data with the assumption of proportional hazards. 
If the disease incidence rates Al(t) and A2(t) are in constant ratio A2(t) = eAl(t), then so 
are the integrated hazards A2(t) = 8Al(t). Plots of Al and $ on a semilogarithmic 
scale should therefore be roughly a constant distance apart. 

Example 5.2 
From the data in Table 5.2 and equation (5.16), one may construct an estimate of cumulative breast cancer 

incidence for women who had no prior exposure to oestrogen and another for women with such exposure. 
For example, the cumulative incidence at age t = 45 for women without prior exposure is estimated to be 

whereas for women with an exposure history it is 

Figure 5.1 shows these two functions, plotted using arithmetic (Fig. 5.1A) and logarithmic (Fig. 5.1B) scales 
for fi. Although there is considerable instability in the estimates due to the small numbers, there is no 
evidence of a systematic trend in the difference between the two curves on the semilogarithmic plot. This 
confirms the results of the formal analysis of Example 5.1 in which we tested whether the ratio of rates for 
exposed versus unexposed showed a trend with age and concluded that the assuinption of proportionality was 
justified. 

Note that the estimated lifetime cumulative incidence for oestrogen nonusers in this cohort is 
approximately twice that of the general population rate of 7%. The rates for users are even higher. This 
illustrates the fact that a history of benign breast disease itself augments the subsequent breast cancer risk 
(Hutchinson et al., 1980). 

(a) Smoothed estimates of age- or time-specijic rates 

Estimates of cumulative incidence or mortality rates such as shown in Figure 5.1 are 
not as informative as they might appear at first sight. They tend to overemphasize the 
jumps that occur at very high ages, at which the estimate is least stable due to declining 
numbers at risk. Also, the age- or time-specific rates are usually of greater intrinsic 
interest than the cumulative rate. Recent work by Ramlau-Hansen (1983) and Yandell 
(1983) has validated kernel estimates of A(t) that have the form 

1 "  t - s  1 '  t - t : d i  
"t) =-6 b ~ ( ~ ) d ~ ( s )  = c K(?) - .  

i=l n i 

Here, K(x) is a smooth, positive kernel function integrating to one, and b is a 
bandwidth that determines the degree of smoothness in the estimate. Thus, i(t) is 
simply a weighted average of the increments di/ni in fi(t), with K defining the weights 
and b the size of the 'window' about t within which the estimates of the instantaneous 
rates are averaged. Its standard error is given by 
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Fig. 5.1 Cumulative incidence of breast cancer for women with benign breast disease 
with (solid line) and without (dotted line) prior exposure to oestrogen. (A) 
Arithmetic scale; (B) log scale 

Age [years] 
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In the examples below we have used the kernel defined by K(x) = (0.75)(1- x2) for 
-1 sx s 1, and K(x) = 0 elsewhere. Bandwidths are varied to achieve a compromise 
between too much random noise (small b) and too great a loss of structure in the 
estimated rates (large b). The final choice is based largely on visual appearance, 
although objective criteria are also available (Titterington, 1985). Note that i ( t )  is 
defined only over the interval (t, + b, tI - b), where t, and t, are the minimum and 
maximum times at which cases were observed to occur. In a refinement of this method, 
Tanner and Wong (1984) select the bandwidths depznding on age, so that they are 
narrow when deaths are frequent and risk-set sizes are large, and wide elsewhere. 

Example 5.3 
Figure 5.2 graphs smoothed estimates of breast cancer incidence for the data on women with benign breast 

disease shown in Table 5.2. These were obtained from the cumulative incidence estimates A shown in Figure 
5.1 by applying (5.18) with K(x) = 0.75(1- x2) for 1x1 S 1 and two bandwidths b = 10 (Fig. 5.2A) and b = 15 
years (Fig. 5.2B). Relatively large bandwidths were necessary to achieve statistical stability because of the 
small number of cases in this study, namely 23 among women with prior exposure to oestrogens and 34 
among those not so exposed. Consequently, they may obscure somewhat the true variation in incidence with 
age. Note the greater degree of smoothing achieved with the larger bandwidth. Although the rate ratio for 
exposed versus unexposed seems to increase slightly over the 40-65-year age range, we already know from 
the partial likelihood analysis in Example 5.1 that this trend is not statistically significant. 

The observation that the age-specific rates are nearly constant over the age range 
shown, especially for women with no prior exposure to oestrogen, is not surprising. As 
mentioned in the previous example, there was a strong birth cohort effect on the 
age-specific breast cancer rates in this particular population. Since the data are 
analysed here on a cross-sectional basis, ignoring birth cohort, the observed age- 
incidence curve is distorted (flattened) in comparison with the more typical pattern of 
rising incidence until the age of menopause with a change in slope thereafter. A similar 
phenomenon was observed in Volume 1 for breast cancer rates in Iceland that were 
analysed according to both calendar year and birth cohort. Compare Figures 2.3 and 
2.4 in Volume 1, and also Figure 4.2. 

(b) Estimating baseline rates under the multiplicative model 

These techniques are easily extended to provide estimates of the cumulative baseline 
rate function 

under the various multiplicative models proposed for heterogeneous samples. Using a 
heuristic argument to achieve joint maximum likelihood estimation of A,, and fl in 
Cox's (1972) mode1 (5.3), Breslow (1974) derived the estimate 

where fi is the maximum partial likelihood estimate from (5.13) or (5.14). The obvious 
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Fig. 5.2 Smoothed estimates of breast cancer incidence for women with benign breast 
disease with (solid line) and without (dotted line) prior exposure to 
oestrogen. (A) Ten-year bandwidth; (B) 15-year bandwidth 

50 55 60 
Age (years) 

1 5-year bandwidth 
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extension for the general multiplicative model is to 

The main difference between (5.20) or (5.21) and the equation applicable to 
homogeneous samples is that the size of the risk set at ti, which appears in the 
denominator of (5.16), is replaced by the total estimated relative risk for the risk set at 
that time. Tsiatis (1981) has shown that $(t) defined by (5.20) also has an asymptotic 
Gaussian distribution. 

If the data are stratified, separate estimates of the background rates 

are obtained for each stratum simply by restricting the deaths and risk sets in (5.20) or 
(5.21) to that stratum. Smoothed estimates of the age-specific baseline rates As(t) are 
available via (5.18). However, their standard errors are more complicated than that 
shown in (5.19) because of the need to account for the error in estimation of P 
(Andersen & Rasmussen, 1982). We present some illustrative examples in $85.5 and 
5.6 below. 

( c )  Nonparametric estimation of relative mortality functions 

An extension of the multiplicative models, incorporating external standard rates, 
allows the equations and computer programs already developed for nonparametric 
estimation of cumulative baseline rates to be used also for nonparametric estimation of 
cumulative relative mortality functions (Andersen et al., 1985). Consider first the 
simple model A(t) = 8A*(t), whereby each subject's disease rate is assumed to be equal 
to a constant multiple of the standard rate for a person of the same age and sex. 
Maximization of the parametric likelihood (5.12) in this situation yields the usual ratio 
of observed to expected deaths, i.e., the SMR 

as the 'optimal' estimate (Breslow, 1975). Here, I: is as defined in $5.2. 
One way of looking for changes in the SMR that would invalidate its use as a single 

summary measure is to divide the age or time axis into a number of discrete intervals 
and to cumulate the deaths and integrated standard rates within each one. The 
methods developed for testing the homogeneity of such SMRs with grouped data ($3.4) 
continue to apply and indeed are strongly recommended. Formal justification is 
provided in terms of a generalization of the basic model to A(t) = 8,A*(t) for 
tk-, < t =s tk. 

A further generalization of this approach allows the SMR to be modelled as a 
continuous function of time, i.e., 8 ( t )  = A(t)/A*(t) or A(t) = 8(t)A*(t). Comparing this 



198 BRESLOW AND DAY 

formula with (5.3), we note that the two models are formally identical: O(t) plays the 
role of the unknown baseline rate Ao(t), and log A*(t) is a time-dependent covariate 
with known regression coefficient /3 = 1. Just as we were earlier able to estimate the 
cumulative baseline rate 

nonparametrically in terms of a step-function (equations 5.16, 5.20 and 5.21), here we 
are able to estimate the cumulative or integrated SMR 

o( t )  = O(u) du. i 
Note that the cumulative SMR equals the average SMR over the time interval (0, t) 
multiplied by the length of the interval. It is measured in units of time. A(t), however, 
is the product of a rate with time and is thus dimensionless. These differences 
notwithstanding, an estimate of the integrated SMR is obtained from (5.20) as 

G(t) = C di 
t iSt  jeRi AT (ti) . 

The estimate of the average SMR over the time interval (ti-,, ti) is thus given by the 
number of deaths or cases observed at time ti divided by the total expected number 
among the risk-set members. 

Introduction of explanatory variables x(t) into the model allows covariance adjust- 
ment of the nonparametric SMR estimates. In its most general form, the underlying 
model for the unknown disease rate is written 

The /3 parameters in the relative risk function are estimated by a generalization of the 
partial likelihood (5.14), namely 

In practice, q ( t i )  or its logarithm is incorporated into the model as an 'offset7 or 
covariable with known regression coefficient. Once $ is obtained via maximization of 
(5.24), the integrated SMR is estimated as 

generalizing (5.21). Adjusted or unadjusted estimates 6 ( t )  based on (5.25) and (5.23), 
respectively, are smoothed via the kernel method to yield nonparametric estimates of 
the SMR: 

1 " t - s  t - ti di 
b ( t ) = i  b K ( ~ )  ~ & ( s ) = ~ Z  b i = 1  K ( - ) -  b R" 
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where R' is the total standard risk at ti, either 

for the unadjusted estimate or 

for the adjusted one. The standard error of the unadjusted estimate is 

analogous to (5.19). 
Sections 5.5 and 5.6 contain several illustrations of nonparametric estimation of 

baseline and relative disease mortality functions and the fitting of multiplicative models 
to continuous cohort data by partial likelihood. Flexible model structures are available 
even within the multiplicative environment by varying the fundamental time variable t, 
the definitions of the covariables x(t) and the relative risk function r. The choice should 
be made separately for each study, taking into account the goals of the investigation 
and the nature of the available data. If good a-priori information suggests that the 
background rates are of a simple parametric form, it may be preferable to model them 
by time-dependent covariables, rather than nonparametrically in the function A,(t). For 
example, population data and multistage theory both suggest that cancer incidence 
rates are proportional to a power of age. Defining one of the covariables x(t) to be the 
logarithm of age at 'time' t, this sort of age dependence is easily accommodated in 
relative risk functions of the form r{x(t); $1 = exp {x(t)P). In this case,. and also when 
the background rates are assumed to be proportional to standard rates A*(t), one may 
want to set t = 'time since onset of exposure' in order to have a nonparametric 
evaluation of the evolution of relative risk with continuing exposure. Alternatively, if 
we set t = age and incorporate x(t) = log (t) into the exponential relative risk function, 
our nonparametric estimate of 8(t) via (5.26) provides a graphical evaluation of the 
goodness-of-fit of the assumed parametric model.' 

5.4 Sampling from the risk sets 

Implementation of the methods of analysis of continuous data outlined in the 
preceding sections is expensive and time-consuming in the case of data from large 
cohort studies. This is true whether one uses external standard rates and the 
log-likelihood (5.12) or adopts the partial likelihood approach based on (5.13) or 
(5.14). In the former instance, the basic data for each subject are needed to re-evaluate 
integrals of the form x(u)Ai(u; a; P) du at each cycle of iteration. In the latter case, 
one must re-evaluate the relative risks r{xj(ti); p) for each subject in every risk set in 

'Recent work by F. O'Sullivan at the University of California, Berkeley, on spline-smoothed hazard 
estimates with cross-validation may offer some advantages over the kernel methods suggested here. 
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which he appears (except, as noted earlier, for the additive relative risk model). It is 
often possible to store some intermediate quantities, such as the covariable values xj(ti) 
for each subject at each time of death, for use in subsequent iterations. However, this 
may not be advisable if it greatly increases the amount of reading the computer does 
from disk files. 

(a) Complexity of partial likelihood analyses 

Suppose that the basic time variable is in fact age and that birth cohort or calendar 
year is accounted for by stratification. Let R denote the risk set consisting of all persons 
being followed in the study at a given age t at some time during a specified calendar 
period s. In practice, we'have found that integral ages and five- or ten-year calendar 
periods generally provide sufficient accuracy for construction of the risk sets. Because 
of ties in the recorded data, several deaths may occur in some of the risk sets. This 
would not happen if they were defined in terms of exact (continuous) ages at death. 
However, since the number of deaths or cases is generally much smaller than the total 
size of the risk set, which may well be of the order of hundreds or even thousands 
depending on the size of the original cohort, the approximation inherent in the use of 
(5.13) with such tied data is excellent. 

Example 5.4 
Table 5.3 shows the distribution by age and calendar period of 142 respiratory cancer deaths that occurred 

among the Montana smelter workers during the years 1938-1963, this being the period of follow-up of the 
initial study reported by Lee and Fraumeni (1969). When classified by integral age at death and by calendar 
year in six intervals of five years or less, they define 91 separate risk sets. Most risk sets contain a single 
respiratory cancer death, but the multiplicities range as high as di = 4, for example, among workers aged 51 
or 67 during the period 1955-1959. Also shown for each risk set are the numbers of deaths from other 
causes, these being the matched 'controls' one would use in a proportional mortality analysis. 

Table 5.4 presents the numbers of noncases (gi) for each of the risk sets defined in Table 5.3. These range 
from 17 workers (in addition to the one case) under observation at age 84 during 1950-1954, to 880 workers 
on study at age 40 during 1955-1959. The mean risk-set size was 322, with a standard deviation of 215. Thus, 
each of the 8014 subjects appeared on average in 3.6 risk sets. Since the calculations needed for a partial 
likelihood analysis treat each such risk-set appearance as a separate observation, the effective 'sample size' is 
of the order of 30 000 observations, of which 142 are cases. This gives some feeling for the magnitude of the 
computing problem. 

(6)  Risk-set sampling 

It is evident from equations (5.13) and (5.14) that the information about relative 
risks associated with the exposure variables is provided by a comparison of the 
exposures of the case(s) with the exposures of the remainder of the cohort members in 
each risk set. Since most risk sets are very large in comparison with the number of 
cases, little information would be lost if the comparison were made between the cases 
and a small sample of 'controls7 drawn randomly from among the other cohort 
members in the risk set. This is the idea of matched 'case-control within a cohort7 
sampling proposed by Thomas, D.C. (1977) for efficient analyses of continuous cohort. 
data. Mantel (1973) earlier suggested a similar strategy for stratified analyses under the 
label 'synthetic retrospective study'. As emphasized in Volume 1, the idea of sampling 
controls from an on-going but unobserved (and possibly only conceptual) cohort 
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Table 5.3 Respiratory cancer deaths (dl and deaths from other causes ( t - d )  for the Montana cohort 
by age and year; construction of the risk setsa 

Age Calendar year 
(years) 

1938- 1939 1940- 1944 1945-1 949 1950-1 954 1955-1 959 1960- 1963 

d t-d d t-d d t-d d t-d d t-d d t-d 

a Entries appear for a given agelcalendar year only if one or more respiratory cancer deaths occurred. 
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Table 5.4 Numbers of Montana smelter workers alive and under observation at particular 
ages and calendar periods; sizes of the risk sets with cases excluded 

Age Calendar year 
(years) 

1938-1 939 1940-1944 1945-1949 1950-1954 1955-1959 1960-1 963 

investigation is one of the main justifications for the validity of inferences made in 
actual case-control investigations. 

( c )  Likelihood analysis 

Under the general multiplicative model, the contribution to the likelihood from a 
risk set containing d cases with exposure variables xl(t), . . . , xd(t), and rn randomly 
sampled 'controls' with exposure variables xd+,(t), . . . , xd+,, is proportional to 
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(Prentice & Breslow, 1978) 

The numerator of this expression is the product of the relative risks for the actual 
cases. The denominator summation is over all possible subsets t = ( t l ,  . . . , td) of size 

d drawn from the d + m members of the risk set, there being (d +dm)  such subsets in 

all. Each may be thought of as representing a possible set of d cases that might have 
been observed to die from the cause of interest at time t and whose relative risk 
product is compared to that for the actual cases. Precisely the same likelihood is used 
for the matched analysis of actual case-control studies. However, in Volume 1 
(equation 7.1), we restricted consideration to multiplicative relative risk functions of 
the form r(x; p) = exp (xp). The same expression is used also for the full partial 
likelihood analysis (5.14), except that there the denominator sum is taken over the 

much larger number of subsamples drawn from the full risk set. (3 
An important feature of the case-control within a cohort method of analysis is that 

the time-dependent covariables for the controls need be evaluated only at the 
particular age t for which they are sampled. Once calculated, they are easily stored in a 
rectangular data array in central memory for efficient computer processing. In a partial 
likelihood analysis, the time-dependent covariables for each cohort member must 
usually be re-evaluated for each risk set in which he appears. 

(d) Model selection and regression diagnostics 

The primary advantage of the risk-set sampling methodology is that it reduces the 
effective number of observations to a reasonable size for efficient computer processing. 
This encourages the investigator sitting at a computer terminal to fit a variety of models 
involving different exposure variables to the sampled data and select those that fit well 
for further examination. Such interactive data analysis is often not possible with a full 
partial likelihood approach. Depending on the size of the data set and the available 
computer, one may have to wait several hours or even overnight before seeing the 
results of a particular fit. 

Regression diagnostics for matched case-control and partial likelihood analyses, 
analogous to those considered in 94.3 for grouped data, have recently become available 
as a result of work by Pregibon (1984), Moolgavkar et al. (1984) and Storer and 
Crowley (1985). For the most part, these are developed in terms of approximate 
changes in estimated regression coefficients or test statistics that would accompany 
deletion of individual observations (cases or controls), or deletion of entire risk' sets. 
As shown earlier, such diagnostics are helpful in evaluating the stability of the fitted 
model. and the extent to which the results depend on data for only one or  a few 
individuals. An illustration of their use in case-control within a cohort analyses appears 
in 95.6. One may also use the predicted within-risk set 'probability of being a case' as a 
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guide to goodness-of-fit. This is defined for each subject as his estimated relative risk 
divided by the sum of relative risks for the entire risk set (assuming one case per set). 
Such predicted probabilities are usefully summed across individuals when there are 
particular covariate values for comparison with the corresponding observed numbers. 
They may also be used to define 'residuals' for case-control studies. 

(e) Estimating background and relative rates from the case-control samples 

An examination of equations (5.20), (5.21)' (5.23) and (5.25), used to estimate the 
cumulative background rates A(t) or the cumulative relative rates O(t), suggests how 
they may be adapted to serve also for case-control samples. The essential requirement 
is that one know the sampling fractions used to select controls within each risk set, i.e., 
the total size of the risk set from which the controls are sampled. This requirement is 
met for the 'synthetic' case-control technique suggested here, where one explicitly 
constructs the risk sets using the cohort data base and then carries out the control 
sampling by computer. It usually will not be met for case-control studies conducted 
outside the context of a cohort study. One then needs supplementary data in order to 
estimate absolute risks. 

Denote by pi = the average of the estimated relative risk factors associated 
with the ni = di + gi subjects in the ith risk set. Thus, 

where rii is the estimated 
A t )  { x )  ; , depending 
estimates A and 6 may both 

relative risk r{x,(ti); 8)' or estimated absolute risk 
upon whether A or O is under consideration. The 
be expressed in the general form 

If we lack data for the entire risk set but do have available a sample of mi controls 
drawn without replacement from the gi noncases in Ri, we could estimate pi by the 
sample mean 

A refinement would be to substitute n;'{diSi + giFi) for Ti, where Si denotes the average 
(relative) risk for the di cases. However, this should make little difference unless the 
cases constitute a large fraction of the risk set. Substituting Fi for pi in (5.21) thus yields 

as our approximation to A, and a similar substitution in (5.25) gives an approximation 
to 6. 

The main drawback to this approach is the fact that the reciprocal of a sample mean 
is a biased estimator of the mean. The problem is acute for the small control sample 
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sizes typically used, with mi in the range from 1 to 20. Breslow and Langholz (1987) 
suggest two possible ways of correcting the bias in (5.29) to yield a better estimate. The 
most promising, based on a Taylor series expansion of ?-' about p-', leads to the 
equation 

where 6: = (mi - 1)-' Cj  (rij - ?i)2 is the within-risk-set variance. The other, derived 
from the jackknife principle of Quenouille (1949), leads to 

Note that (5.30) and (5.31) both reduce to (5.29) if rii = c  for all of the sampled 
controls. 

Section 5.5 illustrates the application of these equations to data from the Montana 
cohort (see especially Figure 5.8). Neither applies very well for mi = 5, but both 
perform satisfactorily for mi = 20. If only five controls or fewer are available from each 
risk set, it is probably wise to pool the controls sampled from each Ri with those from 
neighbouring risk sets R,, i.e., those with ($  - til < b where b is a designated 
bandwidth, in order to increase the effective number of controls for each. The rationale 
for this procedure is that the average (relative) risk pi should be reasonably constant 
over risk sets within a narrow time interval, since their membership will change little. 

( f )  Selection of controls 

The procedure recommended here for construction of the matched sets of cases and 
controls that will actually be used in the analysis is as follows: First select from the risk 
set Ri all di cases that develop or die from the disease of interest at time ti. Then select 
mi controls, at random and without replacement, from among the gi members of Ri who 
do not develop the disease at that time. The total of di cases and mi sampled controls 
then constitutes a reduced risk set RT. 

Early theoretical arguments given in support of this procedure (Prentice & Breslow, 
1978) assumed that the number gi of potential controls was effectively infinite. This 
meant that there would be no overlap between the controls sampled from different risk 
sets, nor would a subject who later developed disease be sampled as a control. In 
practice, of course, this assumption is not met. Indeed, the risks sets corresponding to 
advanced ages are often quite small (see Table 5.4), and it may be desirable to sample 
all available controls from them. It is then quite conceivable that an individual sampled 
as a control at one age will turn out to be a case later on or be sampled again as a 
control at that time. With the methodology employed here, therefore, the R: can and 
do overlap, at least on occasion. 

The fact that the reduced risk sets R, may not be disjoint in finite cohorts has caused 
some concern about the validity of the inference procedure implicit in the use of (5.28), 
since this approach combines statistical information from each of them as if they were 
statistically independent. For example, Lubin and Gail (1984) mentioned the possibility 
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of excluding previously chosen controls from consideration as future controls, yet 
including them as cases if and when they developed the disease. If the original risk sets 
Ri are small, however, this latter procedure is biased (Robins et al., 1986a). Prentice et 
al. (1986) propose a rather more elaborate sampling procedure in which the controls 
sampled along with a case from Ri are also considered as controls in each of .the risk 
sets in which that case previously appeared. This increases the amount of information 
available in the case-control sample by increasing the sizes of the sampled risk sets. 
However, it also introduces correlations between the partial likelihood contributions 
from different risk sets which then need to be accounted for in the analysis. In order to 
avoid these complications, and also to keep the effective sample size small enough to 
permit interactive analyses, we prefer the procedure outlined above in the context of 
case-control analysis of assembled cohort data. Oakes (1981) and Cox and Oakes 
(1984, section 8.8) have shown that the product of terms (5.28) is still a partial 
likelihood (Cox, 1975) and that estimates and standard errors derived from them have 
the same asymptotic validity as those based on all the data. 

The question of the number of controls that should be sampled from each risk set is 
considered in $7.6. 

(g) Computer programs 

Appendix IV of Volume 1 contained the source code for a computer program that 
implemented matched case-control analyses based on the conditional likelihood (5.28) 
with r(x; p) = exp (xp), d = 1 and variable m. Another program, given in Appendix V 
of Volume 1 (Smith et al., 1981) permitted arbitrary numbers of cases and controls in 
each stratum or risk set. However, since the relative risk function was restricted to the 
log-linear form and since the program used an inefficient method of evaluating the 
denominator of (5.28) and related expressions, it is now outmoded. Gail et al. (1981) 
developed a more efficient algorithm for the log-linear model using a recursive method 
of calculation. This approach was developed further by Storer et al. (1983) so as to 
permit additive and other more general relative risk functions. The latest version of 
their program, known as PECAN, mimics the GLIM syntax for specifying terms in the 
model, allows for variable factoring and offsets to the regression equation, and 
provides an option for calculation of regression diagnostics in the manner of Storer and 
Crowley (1985). 

5.5 Analyses of continuous data from the Montana smelter workers cohort 

From descriptions of the Montana smelter workers study and the grouped data 
analyses presented earlier, especially in Examples 2.1 and 2.2 and in $$3.2, 4.5 and 4.8, 
the reader should already have a good understanding of how the occurrence of 
respiratory cancer in this cohort is related to date of hire, birthplace and duration of 
work in moderate or high arsenic exposure areas. In this section, we elaborate by 
reporting the results of fitting of continuous models to the original data set, consisting 
of 8014 individual data records containing details of exposure history and follow-up. 
Due to the complexity of the partial likelihood calculations, fitting each model 
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generally required an overnight computer run in batch mode. In spite of this effort, the 
results serve mostly to confirm what has already been learned from the more 
economical grouped data analyses. They do not provide any really new insights. 

(a) Respiratory cancer SMR and years since first employed 

The simple ratios of observed to expected numbers of respiratory cancer deaths 
shown in Table 4.17 increased markedly about 30 years or so after date of initial 
employment. Here, we take a more detailed look at this change in relative risk using 
the nonparametric estimate (5.23) of the cumulative SMR, defining t = 'years since 
initial employment7. Using all 288 respiratory cancer deaths, including 12 at 80 years of 
age or older that were excluded from most previous analyses, we obtained the results 
shown in Figure 5.3. The first case occurred at 4.07 years from date of hire and the last 
at 62.25 years. The cumulative SMR climbs steeply for the first few years, rises more 
gradually until about 35 years, and then steepens again. However, just as is true for 
estimates of the cumulative mortality function, it is hard to get a good visual 
impression of the SMR itself from this graph alone. 

A much better representation of the temporal changes in the SMR is provided in 
Figure 5.4, where we graph the smoothed SMRs calculated from (5.26) using 
bandwidths of five and ten years. The ten-year bandwidth results in a substantially 
smoother curve, but also restricts the range over which the estimate is available. The 
sharp rise in the SMR appears. to begin at about 30 years using the ten-year bandwidth 
and a little later with the shorter width. Such details may be obscured with a grouped 
analysis. 

Figure 5.5 presents 90% confidence bands for the SMR estimated using a five-year 

Fig. 5.3 Cumulative standardized mortality ratio (SNIR) for respiratory cancer, by 
number of years since initial employment for Montana smelter workers 
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Fig. 5.4 Smoothed estimates of the standardized mortality ratio (SMR) for respiratory cancer, by years since initial 
employment for Montana smelter workers using five- (-) and ten-year (---) bandwidths 
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Fig. 5.5 Ninety percent confidence bands (---) for the smoothed standardized 
mortality ratio (SMR) for respiratory cancer (-), Montana smelter 
workers 
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bandwidth. The confidence bands were derived on the log scale in order to 
approximate more closely a normal error distribution. Specifically, we used the formula 

log 6(t) * 1.645 x {~~(6 ( t ) )} /B( t )  

where s ~ ( B ( t ) )  is given by (5.27). 
One possible interpretation of the results depicted in Figure 5.4 would be that the 

Montana cohort as a whole had somewhat elevated rates of respiratory cancer in 
comparison with the US population, perhaps because of a higher prevalence of 
cigarette smokers, but that the specific effects of the arsenic exposure did not become 
manifest until after a latent period of some 30 years. However, we already know from 
our analyses in Table 4.18 that this interpretation is probably fallacious. Because of the 
study design, namely the fact that follow-up began no earlier than 1938 whereas the 
first employees were hired before the turn of the century, most of the person-years of 
observation for those hired before 1925 occurred in the interval from 25 to 63 years 
from date of hire. Since we already know that the SMR for those hired before 1925 is 
much greater than for those hired later, it seems likely that the apparent rise at 30 
years from date of hire is an artefact caused by confounding with period of hire. 

In order to confirm this latter interpretation, we conducted a proportional hazards 
regression analysis based on equation (5.3) with t = 'years since first employment7. In 
addition to the log standard rates x,(t) = log {A*(t)}, the covariables were x,, a binary 
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indicator of date hired coded 1 for 1885-1924; x ,  a binary indicator of birthplace coded 
1 for foreigh born; x3(t) a lagged, continuous, time-dependent covariable giving the 
number of years worked in moderate arsenic exposure areas at time t - 2; and x,(t), as 
for x3 for years worked in a heavy arsenic exposure area. There were 280 distinct times 
at which cases occurred (for eight pairs of cases, the recorded values of years for 
employment to death were tied), and thus 280 separate risk sets containing as many as 
5000 members each. Even on a large computer system, the partial likelihood fitting of 
the model with four covariables would have been prohibitively expensive and 
time-consuming. For this reason, we rounded time since initial employment to the 
midpoint of the corresponding year, and also excluded the 12 deaths that occurred at 
age 80 and above, thereby reducing the number of risk sets from 280 to 57 for the 
adjusted analysis. 

The regression coefficients ( f  standard errors) estimated with this approach for the 
four covariables were: b, = 0.70 f 0.18, B2 = 0.47 f 0.14, b3 = 0.017 f 0.007 and b, = 
0.041 f 0.010. Two smoothed estimates of the SMR were constructed using a five-year 
bandwidth - one with and one without covariable adjustment. The difference is striking 
(Fig. 5.6). The curve calculated without covariable adjustment closely resembles that in 
Figure 5.4 but is a bit smoother due to the fact that some averaging took place by 
consolidating the number of risk sets from 280 to 57. The adjusted curve has a shape 
that closely resembles the unadjusted one for the first 30 years, but remains roughly 
constant thereafter and even starts to decline to values below 1.0. The sharp peak 
noted in the unadjusted SMR is thus entirely explained by the four covariables and 
mostly, as we have previously noted, by the first one. What appears from Figure 5.4 to 
be evidence for a 'latent interval' turns out on closer examination to be an artefact 
caused by the confounding effects of year of first employment. 

Fig. 5.6 Smoothed estimates of the standardized mortality ratio (SMR) for respira- 
tory cancer, by years since first employment for Montana smelter workers, 
with (---) and without (-) adjustment for covariable effects 
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The adjusted curve in Figure 5.6 represents the SMR for a baseline category of 
US-born smelter workers hired in 1925 or after who spent their entire work history in 
'light' arsenic exposure areas. If the model is reasonably correct, such workers had 
respiratory cancer rates that were only slightly elevated over those of the US 
population. There is no suggestion that the relative risk increased with time since initial 
employment once account is taken of the covariables. If anything, it declined! 

( b )  Comparison of grouped and continuous data analyses 

Similar conclusions regarding the cohort to national rate ratio and its evolution in 
time may be drawn from the grouped data results presented in Table 4.19. See 
especially the middle column of that table, in which variations in the SMR with 
calendar year of follow-up (rather than time since initial exposure) are investigated. 
We estimated a rate ratio for US-born workers hired after 1924 with 'light' arsenic 
exposure of exp (0.581) = 1.79 for the first calendar period of follow-up (1938-1949), 
but this declines to exp (0.581-0.480) = 1.11 during the last period (1970-1977). 

Table 5.5 compares the results of a grouped analysis of the Montana data (Table 
4.19, column 3) with the results from a partial likelihood analysis of the full data set. 

Table 5.5 Regression coefficients and standard errors from multiplica- 
tive models fitted to grouped and continuous data from the Montana 
smelter workers study: 1 938-1977a 
- - 

Regression variables Method of analysis 

Grouped Continuous (partial 
likelihood) 

All covariables binary (011) 

Employed before 1925 
Foreign-born 
Moderate arsenicb 

1-4 years 
5-14 years 
15+ years 

Heavy arsenicb 
1-4 years 
5+ years 

Deviance 

Continuous arsenic variables 

Employed before 1925 
Foreign-born 
Years moderate arsenica ( x  10) 
Years- heavy arsenica ( x  10) 
Deviance 

a From Breslow (1985a) 
Lagged two years 

=Twice log-likelihood 



21 2 BRESLOW AND DAY 

Exposure variables for the partial likelihood analysis first were defined with discrete 
values that indexed the same categories of exposure that were used earlier to group the 
data. The results in the first part of the table indicate an excellent agreement between 
the two methods. This is not surprising in view of the fact that precisely the same 
model structures were used for relative risk. The grouped data analysis accounted for 
age and year effects by stratification into 16 age x year cells (four ten-year intervals for 
each) and explicit estimation of the corresponding parameters. The partial likelihood 
analysis accounted for age and year by stratification of the 276 respiratory cancer 
deaths into 167 risk sets on the basis of integral age at death and five-year calendar 
period. Evidently the age and year effects have been dealt with adequately by the 
broad categories used for grouping the data. There is little point in carrying out the 
costly and time-consuming partial likelihood analysis in this case. 

The second part of Table 5.5 presents results for a partial likelihood analysis that 
incorporates the continuously changing arsenic variables defined by numbers of years 
of work in moderate or heavy exposure areas. A rather crude approximation to this 
continuous analysis can be obtained with the grouped data by assigning quantitative 
exposure values to each level of the two factors for arsenic exposure duration. From a 
sample consisting of 20 controls drawn from each risk set, we estimated that the 
average number of years of moderate arsenic exposure in the <l-year category was 
0.05775 years, in the 1-4 category 2.272 years, in the 5-14 category 8.746 years and for 
the 15+ category 29.74 years. The corresponding averages for the three categories of 
heavy arsenic exposure were 0.0205, 2.219 and 16.69 years, respectively. These values 
were used to define the two quantitative variables for the grouped analysis. In spite of 
the rather approximate nature of their definition, the agreement between the grouped 
and continuous data analyses is still remarkably good. 

Some information regarding the adequacy of the relative risk function exp ( x p )  
proposed for the continuous exposure variable analyses is available by comparing the 
goodness-of-fit measures in the two parts of Table 5.5. Whether obtained from grouped 
or continuous analyses, there is a difference of 10.0 between the two measures of fit. 
Although the justification is approximate for the continuous analysis (due to the 
fact that the continuous exposure variables cannot be exactly represented as linear 
combinations of the corresponding discrete exposure variables), we referred this value 
to tables of chi-square on three degrees of freedom to gauge the relative merits of each 
fit and found p = 0.02. Thus, the assumption of a linear increase in log relative risk 
with increasing duration of exposure does not appear to be a tenable one. The separate 
coefficients for moderate arsenic exposure suggest that a plateau is reached after one 
year of exposure, whereas with heavy arsenic exposure the main effect is not seen until 
five or more years following exposure. See also Example 3.6. 

( c )  External standard rates versus partial likelihood 

Breslow et al. (1983) conducted a partial likelihood analysis of continuous data from 
the Montana cohort and a parallel analysis based on the parametric likelihood (5.12) 
using US death rates for white males in five-year intervals of age and calendar year as a 
standard. These analyses, which were based on follow-up through 1963 only and 
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ignored date of hire, are not comparable with those presented elsewhere in this 
monograph. The results are reproduced here because we did not wish to undertake the 
cumbersome job of reanalysing the 1938-1977 data using the fully parametric model. 
The sizes of the risk sets used in this analysis are those shown in Tables 5.3 and 5.4.. 

There were three exposure variables: xl,  a binary indicator of birthplace, coded 1 for 
foreign born; x,(t), a continuous, age-dependent variable specifying the number of 
years employed in one or more of the areas said to have moderate levels of arsenic 
exposure; and x3(t), defined analogously to x, for heavy arsenic exposure. The latter 
two variables were constructed from personnel records that allowed determination of 
the number of years a worker spent at moderate or high arsenic exposure levels for 
each of the seven calendar periods pre-1938, 1938-1939, 1940-1944,. . . ,1960-1963. 
The relative risk function that related these variables to the age- and year-specific 
background rates was RR = exp{Plxl + P2x2(t) + P3x3(t)} for the partial likelihood 
and RR = exp{a + Plxl + P2x2(t) + P3x3(t)} for the parametric analysis. 

The parametric analysis entailed approximation of the integral expression (5.12) and 
its first and second partial derivatives by a summation over years of calendar time. 
Functions of the covariable values evaluated at annual intervals were multiplied by 
each subject's contribution to the expected number of deaths (i.e., standard death 
rate x time on study during the year), and these products were summed over all 
calendar years that the subject was in the study. 

The first two columns of Table 5.6 contrast the parameter estimates and standard 
errors obtained using these two very different approaches. There is again substantial 
agreement between the estimated regression coefficients. The parametric model, 
incorporating the external standard rates, also allows estimation of the constant term 
6 = exp (&), which represents the SMR for cohort members with zero covariable 
values, relative to the national population. Since 6 = exp (0.61) = 1.84, one would 
interpret the results as saying that US-born workers who remained in light exposure 

Table 5.6 Parameter estimates (f standard errors) obtained by fitting a variety of multiplicative 
models to continuous data from the Montana study: 1938-1963a 

Regression Method of analysis Proportionate 
variable mortality 

Parametric Partial Case and rn controls (other deaths 
based on likelihood as controls) 
standard 
rates rn = 20 rn = 10 rn = 5 

Constant cr 0.61 f 0.12 - - - - - 
Foreign- 6, 0.76 f 0.18 0.72 f 0.20 0.70 f 0.21 0.66 f 0.23 0.75 f 0.25 0.72 f 0.23 

born 
Moderate 6, 0.22f0.07 0.22f0.07 0.21f0.08 0.29f0.10 0.35f0.11 0.22f0.10 

arsenic 
IxlO) 

Heavy 6, 0.58f 0.13 0.60f 0.13 0.69f 0.16 0.74f 0.18 0.85f 0.23 0.53f 0.18 
arsenic 
(~10) 

a From Breslow et a/. (1983) 
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areas had respiratory cancer rates approximately 84% in excess of those of US white 
males of the same age. Foreign-born workers experienced mortality rates approxi- 
mately exp (0.76) = 2.1 times higher than this. For each year spent in a moderate or 
heavy arsenic exposure area, these rates were increased roughly by another 2% 
(moderate exposure) or 6% (heavy exposure). Of course, from our earlier analyses of 
grouped data for 1938-1977 (see especially Table 4.19), we know that these results are 
confounded to some extent with the effect of period of hire and that the change in 
relative risk with additional arsenic exposure, especially at moderate levels, does not 
increase smoothly as assumed by the model. 

The excellent agreement between the results of the two analyses indicates that 
variations in the SMR by age and calendar year do not seriously confound the 
comparisons of SMRs for foreign- versus US-born or those with different degrees of 
arsenic exposure. Furthermore, when interaction terms were added to the partial 
likelihood model, there was no indication that the effects of the exposure variables 
changed systematically with age or year. This provides some mild evidence in support 
of the multiplicative model. However, with the grouped analysis of the data for 
1938-1977 (Table 4.19), we noticed some confounding between calendar year of 
follow-up and period of hire, a variable that had been ignored in the analysis of the 
data for 1938-1963. 

(d) Eficiency gains from use of an external standard 

Perhaps just as striking as the agreement between the regression coefficients is the 
agreement in their standard errors as estimated by parametric and semiparametric 
(partial likelihood) analyses (Table 5.6, columns 1 and 2). According to the results of 
Oakes (1977, 1981), one would expect a substantial gain in efficiency from the use of 
external standard rates only if exposures varied between risk sets, that is to say with 
age and year. Consider a single exposure X considered as a random variable sampled 
from the risk sets. The relative efficiency of /3 estimation for the partial likelihood 
analysis, under the null hypothesis /3 = 0, is given by E{ Var (X I R))lVar (X) where 
Var (X) denotes the total and Var (X  1 R) the conditional (within risk set) variance. A 
similar result holds for the alternative hypothesis /3 #O, provided that the sampling 
probabilities for drawing subjects from risk sets are made proportional to their relative 
risks of death under the model. 

In order to evaluate this result empirically, we estimated the within (3,) and 
between (02,) risk-set components of variance for each of the three exposure variables 
used in the analysis. We found ratios 02,/(02, + o&) of 15.9% for birthplace, 4.5% for 
moderate arsenic exposure and 1.7% for heavy arsenic exposure. This is consistent 
with the small increases observed in estimated standard errors between parametric and 
partial likelihood analyses, these being about 10% for birthplace and smaller for the 
coefficients of the arsenic exposure duration variables. 

(e) Results of sampling from the risk sets 

Table 5.6 also shows the regression coefficients estimated by applying the conditional 
likelihood analysis, based on equation (5.28) with r(x; g) = exp (xg), to case-control 
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samples drawn from the 91 risk sets depicted in Tables 5.3 and 5.4. Twenty controls 
were sampled from each risk set, except that at age 84 (period 1955-1959) all 17 
available controls were used. Subsamples of ten and five were then drawn from the 20. 
Thus, the errors in the estimated coefficients resulting from the post-hoc sampling are 
not statistically independent. Comparison of the case-control results with those of the 
full partial likelihood or parametric analyses shows that the standard errors of the 
estimated coefficients, especially for heavy arsenic exposure, increase sharply as rn (the 
number of controls) decreases. This reflects the loss in information as fewer members 
of each risk set are utilized in the analysis. Twenty controls per case seems none too 
large a number if one wants estimates that are reasonably close to those obtained from 
the full partial likelihood analysis. 

Table 5.7 presents the results of a similar set of case-control analyses, including data 
for the additional follow-up through 1977, for comparison with the partial likelihood 
results in Table 5.5. Sets of five, ten and 20 controls were drawn from each of 167 risk 
sets. The number of data records that were analysed thus approached 3600 when using 
the maximum number (20) of controls. This limited somewhat the number of exposure 
variables that could be accommodated, interfered with the interactive nature of the 
analysis, and thus reduced the advantages of the methodology. The increase in the 
estimated standard errors as one goes from the full partial likelihood analysis (Table 
5.5) to rn = 5 controls is in the range of 23% to 32% for the regression variables in the 

Table 5.7 Regression coefficients and standard errors from case-control analyses of the Montana 
cohort: 1938-1977 

Regression 
variable 

Number of controls (m) Proportionate 
mortality 

m = 20 m = l O  m = 5  (other deaths 
as controls) 

All covariables binary (011) 

Employed before 1925 
Foreign-born 
Moderate arsenic 

1-4 years 
5-14 years 
15+ years 

Heavy arsenic 
1-4 years 
5+ years 

-2 x log-likelihood 

Continuous arsenic exposure variables 

Employed before 1925 0.378 f 0.164 
Foreign-born 0.554 f 0.167 
Years moderate 

arsenic ( x  10) 0.1 59 f 0.075 
Years heavy 

arsenic ( x  10) 0.538 f 0.189 
-2  x log-likelihood 1448.78 



21 6 BRESLOW AND DAY 

second part of the table. The percentage increases in Table 5.6 were larger (25-77%). 
Theoretical calculations (see $7.6) suggest that the largest increases in standard error 
should occur with exposures that are relatively infrequent and that have large relative 
risks. This effect is seen in Table 5.6 but is not so obvious with the updated analysis in 
Table 5.7. 

There is reasonably good agreement between the coefficients of the continuous 
arsenic exposure variables shown in Table 5.6 and those shown in the second part of 
Table 5.5, in spite of the fact that the number of respiratory cancer deaths used in the 
latter analysis was nearly twice .that used in the former. However, the relative risk 
estimated for foreign birth has declined considerably from the earlier analysis. This is 
due to confounding with date of hire, which is not considered in Table 5.6. 

(f ) Proportional mortality analyses 

The final columns of Tables 5.6 and 5.7 present results of parallel case-control 
analyses for the 1938-1963 and 1938-1977 data, respectively, in which the controls 
consist of all deaths from causes other than respiratory cancer in the 91 or 167 risk sets. 
These are reasonably comparable with the results of the other case-control analyses. 
However, the coefficients associated with heavy arsenic exposure generally appear to 
be smaller, which suggests that heavy arsenic exposure may have adverse effects on 
mortality from causes other than lung cancer. 

(g) Estimating the 'latent interval7 

One of the ways of constructing cumulative exposure functions from a time record of 
exposure levels is as a time-weighted average (see $5.1). This means selecting the 
weight function w(u)  in equation (5.1) to be a probability density. Several authors have 
proposed that the log-normal distribution has an intuitively reasonable shape in this 
context. They assume that there is a random interval of time T between each exposure 
increment and its effect on the probability of cancer development, and that log T has a 
normal distribution with mean p and 02. The corresponding distribution of T has a 
mode at exp ( p  - a)', and its coefficient of variation is {exp (2) - 1)'". Figure 5.7 
graphs log-normal density functions with modes at 20 years and various coefficients of 
variation. 

While this manner of constructing exposure functions has a strong intuitive rationale, 
it is not suggested by any particular biological theory of carcinogenesis, and its use in 
cancer epidemiology could well be questioned. Nevertheless, largely out of curiosity, 
we fit a number of models analogous to those shown in the second part of Table 5.7 but 
in which the cumulative exposure variables were calculated as time-weighted average 
exposures with log-normal densities. Table 5.8 presents the results. Comparing the 
goodness-of-fit measures and considering the curves in Figure 5.7, it is clear that 
strikingly different densities give very similar fits and that precise estimation of the 
'latent interval7 is simply not possible with this model and these data. The best fit is 
obtained with a rather peaked distribution (coefficient of variation = 0.1) and a mode 
at 20 years, but the interpretation of this result is unclear for the reasons already 
mentioned. 
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Fig. 5.7 Density functions for the log-normal distribution with mode at 20 years and 
various coefficients of variation (CV) 
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This approach is not, of course, limited to the log-normal distribution. Parameters in 
the other weight functions considered following equation (5.1) could also be varied, to 
see which gave the best fit. 

(h) SMR by years since first employed: case-control approach 

We now return to the analyses depicted in Figures 5.3-5.6, in which we studied the 
evolution in the respiratory cancer SMR as a function of years since initial 
employment. The object is to determine empirically how well we can reproduce these 
results, which required lengthy calculations involving the entire cohort data set, from 
the samples of the cases in each of the 57 risk sets plus five or 20 controls drawn from 
the noncases. The illustrative analyses are restricted to estimation of the SMR without 
covariate adjustment, since this curve had a. more distinctive shape than the adjusted 
curve, even if it was misleading.   he results shown are averages of those obtained with 
25 separate samplings of five controls 'per risk set and 15 separate samplings of 20 
controls. Elsewhere in this section we have considered results obtained from only a 
single sampling (as would be done in practice). 
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Table 5.8 Regression coefficients and standard errors for a series of log-normally 
time-weighted average exposure models fitted to the Montana cohort data; case- 
control (m  = 20) analysis 

p p p p p  - 

Regression variable Coefficient of variation 

0.5 0.1 0.05 O.Oa 

A. Mode = 15 years 

Foreign-born 0.53f 0.16 0.54f 0.16 0.54k0.16 0.53f 0.16 
Moderate arsenicb 0.72 f 0.28 0.52 f 0.22 0.52 * 0.22 0.54f 0.21 
Heavy arsenicb 2.12 f 0.45 1.51 f 0.35 1.445 0.34 1.42 f 0.34 
-2 x log-likelihood 1519.68 1523.36 1524.04 1523.53 

8. Mode = 20 years 

Foreign-born 0.52 f 0.16 0.53 f 0.16 0.53f 0.16 0.52f 0.16 
Moderate arsenic 0.88 f 0.32 0.67 f 0.24 0.67 f 0.23 0.70 f 0.22 
Heavy arsenic 2.40f0.53 1.83f0.36 1.75f0.35 1.67f0.35 
-2 x log-likelihood 151 9.44 151 5.44 151 5.99 151 6.43 

C. Mode = 25 years 

Foreign-born 0.52f 0.16 0.53f 0.16 0.53f 0.16 0.52f 0.16 
Moderate arsenic 1.05f0.37 0.70f0.25 0.68f0.25 0.64f0.23 
Heavy arsenic 2.88 f 0.66 1.86 f 0.41 1.75 f 0.38 1.61 f 0.37 
-2 x log-likelihood 1521.32 151 9.68 1520.13 1521.26 

a Exposure effect concentrated on a one-year period 15, 20 or 25 years later 
Lagged two years 

Figure 5.8A contrasts the curve obtained using all the available data (also shown in 
Figure 5.6) with the average curves obtained by applying the Taylor series (5.30) and 
jackknife (5.31) estimates to case-control samples with five controls per risk set. The 
bias is clearly unacceptable, the Taylor series estimate overestimating the SNIR and the. 
jackknife underestimating it for the first 20-30 years. A much more satisfactory result 
is obtained by using 20 controls per risk set (Fig. 5.8B) or by pooling the five risk sets 
containing five controls each for which the ti are wi.thin 2.5 years of the target value 
(Fig. 5.8C). The latter procedures both provide a reasonably faithful reproduction of 
the original result. 

5.6 Continuous variable analysis of nasal sinus cancer deaths among Welsh nickel 
refiners 

We continue our analyses of cohort data from the Welsh nickel refiners study in 
order to illustrate some further features of continuous variable modelling. These data 
have already been considered in Example 4.1 and $4.10. 

Table 5.9 presents observed and expected numbers of nasal sinus cancer deaths 
according to the four risk variables of primary interest: age at first employment, year of 
employment, exposure index and time since first employment. Many of the essential 
features of the data are already evident from these simple descriptive statistics. The 
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Fig. 5.8 Smoothed estimates of the standardized mortality ratio (SMR) for respira- 
tory cancer for Montana smelter workers estimated from 15 case-control 
samples. (A) Five controls per risk set, no pooling; (B) 20 controls per risk 
set, no pooling; (C) five controls per risk set with pooling of five 
neighbouring risk sets. - , all controls; ---, jackknife; --- , Taylor 
series 

Time since first employment (years) 
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Table 5.9 Summary data on deaths from nasal sinus cancer among Welsh nickel 
refinersa 

Variable Category Person- Nasal sinus cancer 
years 

Observed Expected Rateb 

Age at first 
employment 
(years) 

Year of first 
employment 

Exposure 
category (years) 

Time since first 
employed (years) 

Totals 15230.8 56 0.21 0 3.7 

a Determined from data shown in Appendix VIII. There are slight differences between Tables 4.23 and 5.9 in 
the totals of expected numbers of deaths due to the use of slightly different data. 

Nasal sinus cancer death rate per 1000 person-years of observation 

nasal sinus cancer rates increase dramatically with duration of 'exposure': they seem to 
have one peak about 25-29 years from date of hire and another at about 50 years. 
However, both exposure and time since employment are correlated with age and year 
of employment. A major goal of our analysis will be to try to separate the effects of 
each of the explanatory variables using an appropriate regression model. Results for 
nasal sinus cancer are analysed without reference to standard rates since the 
'background' is so inconsequential. 

(a)  Analysis of nasal sinus cancer risk by time since first employment 

Figure 5.9A graphs the cumulative nasal sinus cancer death rate for the entire cohort 
as a function of time since initial employment (equation 5.16). We estimate the 
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Fig. 5.9 Death rate from nasal sinus cancer by years since initial employment, Welsh 
nickel refiners. (A) Cumulative rate; (B) smoothed instantanecius rate 

20 30 40 50 

Time since tirst employment (years) 

Time since first employment (years) 
5-year bandwidth 
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cumulative 'lifetime' risk (to age 85) to be about 15-20%, a striking figure when one 
considers how rare the disease is in the general population. The smoothed estimate of 
the annual death rates shown in part B of the figure, obtained from equation (5.18) 
with a five-year bandwidth, confirms the possibility of a bimodal pattern that was 
already evident in the grouped data of Table 5.9. 

Our initial analysis of these data used the proportional hazards model with log-linear 
relative risk function (equation 5.3) and considered t = 'time since first employment' 
(TFE) as the basic time variable. We define a number of indicator variables to identify 
levels of the factors age at first employment (AFE), year of first employment (YFE) 
and exposure (EXP). Recall that AFE, YFE and TFE were investigated jointly in the 
grouped data analysis of Example 4.1. 

Since ages were recorded to two-decimal accuracy, and we retained this level of 
detail in the analysis, each of the 56 cases of nasal sinus cancer occurred at a unique 
time since first employment and generated a separate risk set. The first case occurred at 
15.23 years from initial hire, at which time there were 284 individuals under 
observation. Risk-set sizes increased gradually to a maximum of 531 men at risk at 
28.72 years since date of hire and then declined. The smallest risk set, with 73 subjects, 
was at 57.48 years since date of hire, the maximum number of years at which a case 
was observed. 

Table 5.10 summarizes the results of fitting the model with categorical regression 
variables by partial likelihood. Each of the factors AFE, YFE and EXP is seen to have 
a strong, independent effect on risk. The rise in relative risk with age at first 
employment is a particularly striking and unusual observation (Peto, J. et al., 1984). 
While an increase in risk with AFE is evident in the summary data of Table 5.9, its 
magnitude is obscured by the fact that those hired at later ages generally did not 
survive to the point 45-50 years from date of employment at which the nasal sinus 
cancer rates are highest. Once this confounding is accounted for in the regression 
analyses, the role of AFE appears to be even more dramatic. 

The baseline cumulative death rate is shown graphically in Figure 5.10A; a smoothed 
estimate of the instantaneous death rate, using a five-year bandwidth, appears in part B 
of the figure, and for a ten-year bandwidth in part C. Because of the coding of the 
covariables, this baseline risk is estimated for a (fictitious) subject who was under 20 
years at hire, first worked before 1910 and was never assigned to high-risk categories. 
The estimated cumulative lifetime risk for this category does not exceed I%,  whereas 
for the cohort as a whole it approaches 15-20%. Furthermore, the peak in the nasal 
sinus cancer death rate at 30 years past employment that was suggested by the crude 
analysis (Fig. 5.9B) essentially dissappears when adjustment is made for the covariable 
effects. 

The second part of Table 5.10 reports the fit of a model with continuous rather than 
discrete covariables. The definitions of the covariables used in this fit were determined 
after considering the results in the first part of the table and after conducting some 
exploratory analyses using the case-control technique (see below). Comparing the 
maximized partial likelihoods obtained from the grouped and continuous analyses, we 
conclude that the fit with four continuous covariables is almost as good as that with the 
larger number of binary variables that identified categories of risk. 
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Table 5.10 Results of fitting the multiplicative model by maximum likelihood to 
data on nasal sinus cancer deaths; 'time' = years since first employed 

Level Parameter estimate p value Relative risk 
f standard error 

All covariables discrete 

AFE (years) 15-19 
20-27.5 1.48 f 0.75 
27.5-35 2.21 f 0.76 
35 + 3.64 f 0.79 

Y FE 1 900- 1 909 
1910-1914 1.03f0.38 
1915-1919 1.11f0.51 
1920-1924 0.01 f 0.53 

EXP (years) 0 
0.5-4.0 0.88 f 0.40 
4.5-8.0 1.19 f 0.47 
8.5-1 2.0 2.30 f 0.52 
12.5+ 2.84 f 0.57 

-2 x log-likelihood = 561.2 

All covariables continuous 

log(AFE-10) 2.22 f 0.44 
(YFE-1915)/10 -0.09 f 0.32 
(YFE-1915)2/100 - 1.26 f 0.51 
log(EXP + 1 ) 0.77 f 0.17 

-2 x log-likelihood = 568.9 

a AFE, age at first employment; YFE, year of first employment; EXP, duration of 'exposure' in designated 
job categories 

One goal of constructing appropriate continuous covariables was to lay the 
foundation for assessing the goodness-of-fit of the multiplicative model by incorporat- 
ing cross-product or interaction terms in the regression equation. Such analyses are 
more sensitive if the interactions can be expressed in a quantitative rather than a 
qualitative manner so that the chi-square statistics for testing their significance have at 
most a few degrees of freedom (see Volume 1, 56.6 and 6.7). For reasons of economy 
and convenience, however, these explorations for interaction effects were restricted to 
the case-control analyses reported below. 

(b) Analysis of nasal sinus cancer risk by attained age 

We did not choose attained age as the basic time variable in our initial partial 
likelihood analysis of the nasal sinus cancer deaths. Since it is obvious that all or nearly 
all such cases were caused by the specific nickel exposure rather than by general 
environmental exposures, the usual reasons for regarding age as, the key explanatory 
variable were absent. Most persons concerned with the analysis of these data have 
considered duration of time since onset of exposure to the causal agent to be the most 
relevant time scale. 
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Fig. 5.10 Baseline death rate from nasal sinus cancer by years since initial employ- 
ment for Welsh nickel refiners, estimated by the multiplicative model. (A) 
Cumulative rate; (B) smoothed instantaneous rate (five-year bandwidth); 
(C) smoothed instantaneous rate (ten-year bandwidth) 

Time since first employment (years) 

Time since first employment (years) 
5-year bandwidth 
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Fig. 5.10 (contd) 

30 35 40  45 
Time since first employment (years) 

10-year bandwidth 

One might ask whether attained age should be included as an additional variable in 
the analysis to see whether it carries some explanatory value after accounting for age at 
onset and time since first exposure. However, since attained age is the sum of these 
latter two variables, it is clear that such an analysis cannot separate the (linear) effects 
of the three factors. The basic problem is the same as that which occurs also with 
age-period-cohort analyses. 

Nevertheless, largely out of curiosity, we did conduct an alternative partial 
likelihood analysis with attained age replacing time since first employment as the basic 
time variable. Table 5.11 reports the regression coefficients for the discrete levels of the 
factors AFE, YFE and EXP obtained with this approach, and Figure 5.11 shows the 
smoothed estimate of the baseline death rate as a function of age. The relative risks 
associated with YFE and EXP depend little on whether the baseline risk is expressed 
as a function of age or of time since onset of exposure. The increase in relative risk 
with AFE, however, is substantially less when age is used as the basic time variable. 
Correspondingly, the baseline risk increases more smoothly and sharply as a function 
of age than as a function of time since onset of exposure. (Compare Figures 5.1OB and 
5.11.) 

(c) Nasal sinus cancer deaths: sampling from the risk set 

In order to reduce the volume of data so as to explore different ways of constructing 
continuous regression variables and to search for significant interactions, we carried out 
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Table 5.11 Results of fitting the multiplicative model by maximum partial 
likelihood to data on nasal sinus cancer deaths; 'time' = age 

Variablea Level Parameter estimate p value Relative risk 
f standard error 

AFE (years) 15-19 
20-27.5 1.03 f 0.75 0.17 
27.5-35 1.30 f 0.75 0.08 
35+ 2.08 f 0.77 0.007 

YFE 1900-1 909 
1910-1914 0.93 f 0.38 0.01 
1915-1919 0.93 f 0.51 0.07 
1920-1924 -0.12 f 0.52 0.82 

EXP (years) 0 
0.5-4.0 0.82 f 0.40 0.04 
4.5-8.0 1.10 f 0.47 0.02 
8.5-12.0 2.24 f 0.51 0.0001 
12.5+ 2.77 f 0.57 0.00001 

-2 x log-likelihood = 573.36 

a See legend to Table 5.10 

Fig. 5.11 Adjusted nasal sinus cancer rates by age, smoothed using five- (-) and 
ten-year (- - -) bandwidths 

50 55 60 65 70 75 80 

Age (years) 
5- and 10-years bandwidths 
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Table 5.12 Results of fitting the multiplicative models by conditional maximum 
likelihood to matched sets of a nasal sinus cancer case and 20 controls; 'timer= years 
since first employed 

Level Parameter estimate p value Relative risk 
f standard error 

YFE 

EXP (years) 

All covariables discrete 

AFE (years) 15-1 9 
20-27.5 
27.5-35 
35+ 
1900-1 909 
1910-1914 
191 5-1919 
1920-1 924 
0 
0.5-4.0 
4.5-8.0 
8.5-1 2.0 
12.5+ 

All covariables continuous 

0.83 f 0.42 
0.93 f 0.48 
2.45 f 0.56 
2.56 f 0.63 

Deviance = 259.80 

2.09 f 0.46 <0.001 
-0.23 f 0.32 0.438 
-1 .O1 f 0.53 0.057 

0.72 f 0.18 <0.001 
Deviance = 267.67 

- -  

"See legend to Table 5.10 

Table 5.13 Deviances for various interaction terms when fitting the multiplicative model to 
matched sets of a nasal sinus cancer case and 20 controls; 'time' = years since first employed 

Interaction variables included in equationa Deviance 

None 
log (AFE-10) x (YFE-1915)/10+ log (AFE-10) x ( ~ ~ ~ - 1 9 1 5 ) ~ / 1 0  
log (AFE-10) x log (EXP + 1) 
(YFE-1915)/10 x log (EXP + 1) + ( ~ ~ ~ - 1 9 1 5 ) ~ / 1 0 0  x log (EXP + 1) 
log (AFE-I 0) x log (AFE-I 0) 
log (EXP + 1) x log (EXP + 1) 
log (AFE-I 0) x TFE 
(YFE-1915)/10 x TFE + ( ~ ~ ~ - 1 9 1 5 ) ~ / 1 0 0  x TFE 
log (EXP + 1 ) x TFE 

a In addition to four continuous variables shown in the second part of Table 5.12; see legend to Table 5.10 
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the risk-set sampling procedure, selecting 20 controls from each of the 56 risk sets. This 
yielded a data file containing 21 x 56= 1176 records that could be analysed with 
relative ease. Table 5.12 shows the results of fitting the same modcls to the case-control 
data as had been fitted earlier to the entire data set (Table 5.11). While there is 
reasonably good agreement, the relative risks associated with the highest exposure 
category and employment in the 1910-1919 period are underestimated with the 
case-control data. Just as we found for the full analysis, however, a summary of the 
data in terms of the four continuous variables is quite adequate in comparison with a 
summary in terms of the corresponding discrete factors. 

Fig. 5.12 Deletion diagnostics for the model shown in the second part of Table 5.12; 
approximate effect on the standardized regression coefficients from deletion 
of individual cases. AFE, age at first employment; YFE, year of first 
employment; EXP, duration of 'exposure7 in designated job categories 

LOG CAFE-10) 

Risk set number 

( Y F E - 1 9 1 5 ) / 1 0  

Risk set number 

C Y F E - l 9 1 5 ) - - U l O O  

Risk set number 

LOG (D(P*l) 

Risk set number 
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The question of possible interactions between the continuous variables which, if 
present, would tend to invalidate the results obtained with the simple multiplicative 
model is examined in Table 5.13. For no risk variable was there any indication of a 
(linear) dependence of its multiplicative effect on values of another risk variable or on 
time since first employment, nor was there strong evidence of curvature in the 
dependence of log relative risk on log (AFE - 10) or log (EXP + 1). Had there been, it 
would suggest that some other transformation of these variables be used instead. 

One last check on the adequacy of the fitted model was to examine the approximate 
change in the regression coefficients estimated for each of the four continuous variables 
that would accompany the deletion of any one of the 56 cases from the analysis. Since 
each risk set contained a single case, deletion of a case has the same effect as deleting 
the entire risk set for these data. Results obtained using the procedure of Storer and 
Crowley (1985) are shown in Figure 5.12. The risk sets are numbered according to time 
since first employment so that number 1 corresponds to the case diagnosed at 15.23 
years and number 56 to the case diagnosed at 57.48 years. For none of the four 
variables does deletion of a risk set change the estimated value of the /3 regression 
coefficient by more than half its standard error. The linear and square terms in YFE 
are correlated, so that the deletion of certain risk sets (e.g., numbers 14, 24, 56) causes 
the coefficient of (YFE-1915)/10 to increase and that for (YFE-1915)~/100 to decrease, 
and vice versa. 
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CHAPTER 6 

MODELLING THE RELATIONSHIP BETWEEN RISK, DOSE 
AND TIME 

6.1 Introduction and rationale 

The previous two chapters developed the statistical methods now available for fitting 
models to data from cohort studies. It was emphasized that the association between 
excess risk for disease and the temporal record of exposure may depend on many 
features of the exposure history, and that a misleading picture may emerge from the 
analysis if a relevant variable is omitted. An example is given in Figure 5.6, where 
much of the apparently powerful effect of time since first exposure is shown to result 
from a major change in exposure at the Montana smelter in 1925. The purpose of this 
chapter is to describe the types of variable that one might expect to be important, 
either from the behaviour of excess risk observed in previous studies, or from models 
of carcinogenesis derived theoretically but supported by both experimental and 
epidemiological results. Attention will also be given to the forms of dose-response 
curve that past experience or theoretical considerations would suggest might be 
appropriate. It is important, furthermore, that, however excess risk is modelled, the 
results of the analysis respond to the basic aims of the study. The underlying purposes 
of the investigation need to be kept firmly in view. These aims are essentially of two 
types - first, to provide a scientific basis for public health and, second, to contribute to 
the understanding of the biology of human disease. The former requires accurate 
assessment and prediction of risk, the latter requires an understanding of the role in 
the disease process played by different exposures over time. 

In the area of public health, epidemiology i s  expected to assist in resolving such 
questions as: 

(i) In early detection programmes for breast cancer, the breasts of women aged over 
40 years might be exposed every year, or every two years, to a low dose of 
radiation, perhaps 0.2 rads per examination. Does this dose, cumulated over time, 
represent an appreciable hazard for inducing breast cancer? Is the hazard 
comparable in magnitude to the reduction in breast cancer mortality attributable 
to screening? 

(ii) Do the materials used to replace asbestos represent a carcinogenic hazard? Are 
the data currently available sufficient to assess whether the risk is appreciably less 
than that associated with asbestos? 

(iii) The carrier state for hepatitis B virus is a major risk factor for primary liver 
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cancer. Given the dynamics of infection with this virus in a population, what 
long-term effect on liver cancer rates would be predicted by a mass vaccination 
programme? 

To answer questions of this type, models are required relating risk to exposure, both 
in terms of the degree of exposure and the time during which exposure occurred. These 
models should provide a reasonable basis for extrapolation from the observed range of 
exposure to the levels of interest. Examination of the currently available data on a 
range of exposures should indicate what type of behaviour is observed epidemiologi- 
cally, thus suggesting which models have empirical support (see 96.2). 

To assist in understanding the biology of human disease, biological models of disease 
causation and development are helpful. These models come mainly from experimental 
or in-vitro work, in which the process of carcinogenesis is observed at the cellular level. 
To translate models constructed to describe cellular events into models that can 
describe events at the population level, i.e., incidence rates, requires a degree of 
abstraction that is best handled by mathematics. For this reason, mathematical models 
of the carcinogenic process have received considerable attention, since they have the 
potential for describing in a unified way a wide variety of phenomena. Use of these 
models for interpretation of epidemiological data may assist in understanding the mode 
of action of agents carcinogenic to man. Section 6.3 outlines some of the models of 
carcinogenesis that have been proposed, with the implication of these models for the 
behaviour of incidence rates. In 96.4, we attempt to describe the data of 96.2 in terms 
of these models. 

The material of 996.2 to 6.4 highlights the variables that appear to be the most 
concise predictors of future risk. These variables would therefore appear to be those of 
greatest value to incorporate in analyses of epidemiological studies. 

In 96.5, we consider further the data from the South Wales cohort of nickel refiners 
to illustrate how multistage concepts may be used to aid in the interpretation of 
epidemiological results. 

6.2 Dose-time relationships observed in epidemiological studies 

In this section we examine the metameters of dose or exposure that have been used 
in a number of situations, the relationship of these metameters to excess risk and the 
influence of different time variables. The latter include duration of exposure, time since 
first exposure, time since exposure stopped and age at first exposure. The effect of 
these factors on incidence rates differs for different exposures, presumably in a manner 
determined by the mode of action of the exposure. This topic is considered in 006.3 
and 6.4. 

As observed in Chapter 1, most of the data that provide quantitative information on 
the relationships of both time and dose with excess risk come from cohort studies, and 
we limit our discussion mainly to data of this type. The main factor thus excluded, for 
which quantitative data relating dose and risk are available, is alcohol. Quantitative 
data relating alcohol consumption to cancer come predominantly from case-control 
studies, some of which were described extensively in Volume 1. 
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(a) Lung cancer and cigarette smoking 

The cohort study for which the most extensive follow-up results have been reported 
is that of the British doctors. In the publication (Doll & Peto, 1978) that considered 
specifically the quantitative association of amount smoked and duration of smoking 
with lung cancer risk, attention was confined to lifelong nonsmokers or men who 
reported a regular smoking pattern in response to the three questionnaires (i.e., men 
who started smoking between ages 16 and 25 years, and who never reported stopping, 
changing by more than five cigaretteslday, or smoking any form of tobacco other than 
cigarettes). The purpose of these restrictions was to obtain the most accurate estimate 
of the dose-response curve by limiting the analysis to individuals with the most stable 
and most accurately recorded smoking histories. A summary of the basic data has been 
given in Table 4.21, where person-years and numbers of observed lung cancer deaths 
are tabulated by current age and amount smoked. The analysis investigating the 
relationship between dose and risk used as a measure of dose the average number of 
cigarettes smoked per day. A two-factor multiplicative model was fitted (expression 
4.2), with one set of parameters giving age effects and the second set of parameters 
giving dose effects. The ratio of these latter parameters can be interpreted as relative 
risks. The results of a similar analysis by the original authors are displayed in Figure 
6.1. The exclusion from the formal analysis of those men smoking more than 40 
cigarettes a day has aroused some discussion, but is defended at length by them. The 
functional form used by the authors to fit the curve of Figure 6.1 is 

Relative risk = 0.0278(Dose + 6)2,  (6.1) 

the baseline being taken as nonsmokers. As described in Tables 4.22 and 4.23, other 
functional forms could be used to fit the observed curve, such as: 

Relative risk = (1 + dose)k 

Relative risk = 1 + b dose + c ( d ~ s e ) ~ ,  

which may yield a sightly better fit than the curve given in Figure 6.1. All three, 
however, indicate significant upward curvature. 

This analysis has used data in which within-individual variation in smoking habits has 
been reduced to a minimum. In other studies, in which individuals with varying 
smoking habits were not excluded from the published analyses, the dose-response 
relationship appears almost linear. The main point at issue here, however, is not the 
existence of some upward curvature, but the metameter of exposure that was 
used - average number of cigarettes smoked per day. 

The age parameters obtained from the preceding analysis were normalized to be 
interpretable as age-specific rates, standardized for dose. The logarithm of the rate was 
plotted against the logarithm of the age and against the logarithm of the duration of 
smoking before onset of disease (taken as age - 22.5). Both gave a reasonably straight 
line, although with a different slope, reflecting the high correlation between the 
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Fig. 6.1 Relative risk of lung cancer in terms of number of cigarettes smoked per day. 
The numbers of onsets in each group are given, and 90% confidence intervals 
are plotted. The point for those smoking more than 40 cigaretteslday is 
omitted. From Doll and Peto (1978) 

Dose [cigarettes/day) 

resulting estimates of k and w when fitting models of the form 

Mortality rate = (Age - w ) ~ ,  (6.2) 

where denotes proportionality. 
The choice between age or duration of smoking as the time variable to use to 

describe the mortality rates among smokers cannot be made on statistical grounds from 
these data. However, the exponent of 4.5 for duration of smoking is similar to the 
exponent for the power curve describing age-specific lung cancer rates among 
nonsmokers. Testing for interaction with dose gave no indication that the relationship 
of mortality with duration of smoking varied with amount smoked. Mortality rates for 
lung cancer among continuing smokers in the British doctors study could therefore be 
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Table 6.1 Evolution of mortality from lung cancer among ex-cigarette 
smokersa 

Time since smoking stopped (years) 

No. of deaths among ex-smokersb 10 12 8 7 
No. of deaths as percentage.of 100 68 35 25 11 

no. expected among 
continuing smokers 

No. of deaths divided by no. 15.8 10.7 5.9 4.7 2.0 
expected among lifelong non- 
smokers (i.e., relative risk) 

- -- 

a From Doll and Peto (1976) 
Excluding those who stopped smoking after developing lung cancer 

succinctly summarized by a single expression incorporating both amount smoked and 
duration of smoking, as follows: 

Mortality rate (cigaretteslday + 6 ) 2 ( ~ g e  - 22.5)4.5. 

In an earlier paper reporting on the same study, data were also given for ex-smokers 
(Doll & Peto, 1976). Within a few years of quitting smoking, lung cancer rates fell 
away from the rates seen in continuing smokers and after 15 years or more approached 
levels seen in nonsmokers of the same age. Table 6.1 gives the falling relative risks. 
The evolving risks after quitting smoking are displayed in Figure 6.2, from which it 
appears that the absolute rate for lung cancer freezes at the level reached when 
smoking stopped. Thus, for an ex-smoker, lung cancer rates can also be expressed in 
terms of duration of smoking and average amount smoked per day, as in expression 
(6.3). Duration of smoking could clearly be replaced by time since smoking started 
minus time since smoking stopped; the choice of which two of these three variables to 
use in expressing the effect of time is somewhat arbitrary. In the present situation, 
duration of smoking and time since stopped appear the most appealing. In a later 
example, time since first exposure is of particular importance. 

In the British doctors study, the age at which cohort members started to smoke 
showed insufficient variation for it to be adequately studied. The preceding description 
of risk applies to individuals who started to smoke around the age of 20 years. The 
effect of age at which smoking started can be examined from other studies. Some 
results are given in Table 6.2, taken from the Dorn study of US military veterans 
(Kahn, 1966). Although the range of ages at starting to smoke is not large, it is broad 
enough to see that the mortality rates, given the duration of smoking, are independent 
of the age at starting. Thus, equation (6.3) above, expressing mortality as a function of 
dose and time, holds irrespective of the age at starting, provided that (age - 22.5) is 
replaced by duration of smoking. Thus, lung cancer rates among current smokers or 
ex-smokers can be expressed accurately just in terms of duration of smoking and of 
average number of cigarettes smoked per day. 
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Fig. 6.2 Mortality rates (logarithmic scale) of lung cancer in ex-smokers (a), 
expressed as a proportion of the rates expected in regular cigarette smokers 
at the ages at which smoking was stopped; by time since smoking was 
stopped. For comparison, similar proportions are shown for regular cigarette 
smokers of the same age (x) and for lifelong nonsmokers of the same age 
(0). From Doll (1978) 

Time since stopped smoking [years] 

(b) Asbestos and mesothelioma 

The high risk of cancer, mainly lung cancer and mesothelioma, following asbestos 
exposure has been extensively studied. A recent review (Peto, J. et al., 1982) has 
examined in detail the risk of mesothelioma as a function of time, using the results of 
the five studies for which mesothelioma rates were available by time since first 

Table 6.2. The effect of age at starting to smoke on 
mortality from lurlg cancera 

Age at starting to smoke Annual mortality rate per 100 000 population 
(years) (age in years) 

a From Appendix Table D of Kahn (1966) 
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exposure. The effect of age at first exposure was investigated in the cohort of North 
American insulation workers, which contributed two-thirds of the mesothelioma cases 
recorded in the five studies. Mesothelioma is rare among the general population, so 
that cases unrelated to asbestos in the study population would be unlikely. Thus, 
as in the analysis of the nasal sinus cancers in 35.6, mortality rates from mesothelioma 
among the exposed can be examined without the need for reference to a background 
rate. ~ o r t a l i t ~  rates are shown in Figures 6.3A and 6.3B by age at death and by age at 

Fig. 6.3 Cumulative risk of dying of mesothelioma in the absence of other causes of 
death among North American insulation workers first exposed to asbestos at 
age 15-25 (. - -), 25-34 (-) or over 35 (- -), against age (A) and against 
years since first exposure (B). From Peto, J. et al. (1982) 
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Age (years] 
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Time since first exposure [years] 
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first exposure. As for lung cancer and cigarette smoking, age at first exposure does not 
affect the rates. The superposition of the curves in Figure 6.3B is striking. 

Since age at first exposure can be ignored, curves of similar form can be used to 
relate time since first exposure to mesothelioma rates for each cohort without need for 
a stratification by age. Figure 6.4, displaying data for US insulation workers, indicates 
that mesothelioma rates increase with a power of age since first exposure: 

Mesothelioma mortality rate = b(time since first exposure)k. (6- 4) 

One might interpret the parameter b to represent in some way the intensity of the 
exposure, and the parameter k to represent an inherent characteristic of the process of 
mesothelioma development. k might be similar in different cohorts, whereas b would 
be expected to vary between cohorts. The results of fitting the above expression 
simultaneously to the data from all five cohorts, with the same value of k for each 
cohort but allowing b to vary, are given in Table 6.3. The fit is excellent, and holds 
equally well for either pleural or peritoneal tumours (with a value for k of 3.2). As in 
the preceding example with cigarette smoking, other models of the form: 

Rate (time of exposure - w ) ~  

fit the data equally well, and in fact the expression 

Mesothelioma rate = b(time since first exposure - 1 0 ) ~  

fits better than (6.4) in the first 15 years, and equally well thereafter. Subtracting ten 
years may reflect the length of time taken for a transformed cell to progress into a fatal 
tumour. 

The preceding discussion has ignored both length of exposure and any effect of 
stopping exposure. Once asbestos exposure has taken place, however, fibres remain in 
the body, and .the relationship between external exposure and the more relevant tissue 
exposure is unclear. The latter may well continue long after the former has been 
removed. For this reason, both duration of exposure and time since last exposure are 
ill-defined for asbestos. Furthermore, it is clear from Table 6.3 that an adequate 
description of mesothelioma rates can be given without taking account explicitly of 
exposure cessation. 

The parameter b, which varies considerabl; between the cohorts given in Table 6.3, 
would represent effective dose, incorporating average length of exposure, intensity of 
exposure and the potency for mesothelioma induction of the specific type of fibre. No 
data currently available suggest that the parameter k differs between cohorts with 
long-term continuous exposure and those with short-term exposure. 

Thus, rates for mesothelioma induced by asbestos can be well summarized in terms 
of time since first exposure, together with some measure of cumulative exposure, which 
combines duration with dose level. The contrast with the cigarette smoking-lung 
cancer relationship is marked, and will be discussed in $6.3 in terms of models of 
carcinogenesis. 
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Fig. 6.4 Mesothelioma mortality among North American insulation workers 
exposed 1922-1946, by time since first exposure. Bars indicate 
confidence intervals. From Peto, J.  et al. (1982) 
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b = 4.37 x lo-') 
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Peto, J. (1980) 
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(c) Asbestos and lung cancer 

Among cohorts exposed to asbestos, in which excesses of both mesothelioma and 
lung cancer are observed, the ratio of the excess number of lung cancers to the number 
of mesotheliomas decreases sharply with increasing time since first exposure. It 
increases, however, with increasing age at first exposure. It is clear, therefore, that the 
excess of lung cancer evolves with time in a different manner to the excess of 
mesothelioma. 

A number of cohorts have been extensively studied, and a review of the major 
studies has been made by Acheson and Gardner (1980) to establish dose-response 
patterns. A linear relationship between cumulative dose and excess relative risk has 
been observed in several studies - for example, the study of Quebec asbestos miners 
(Fig. 6.5). Workers at an amosite asbestos factory in New Jersey during the Second 
World War were heavily exposed for short periods, and study of this cohort has 
provided a clear picture of a linear relationship between duration of exposure and 
excess relative risk (Fig. 6.6) (Seidman et al. 1979). In one study, little extra effect of 
reported asbestos exposure levels was seen after adjusting for duration of exposure 
(Peto, J., 1980). That is to say, duration of exposure may give a measure of cumulative 
dose which cannot be appreciably improved by measurement of dose level, given the 
relative imprecision of these latter measurements, at least in previous decades. 

Fig. 6.5 Dose-response relationships for lung cancer following asbestos exposure in 
Quebec miners and millers. From Acheson and Gardner (1980) 

1000 2000 3000 

Cumulative dose (million particules per cubic foot x years) 



MODELLING THE RELATIONSHIP BETWEEN RISK, DOSE AND TIME 243 

Fig. 6.6 Relative risk of death from lung cancer in a group of amosite insulation 
workers, by duration of exposure (after Seidman et al., 1979). From Acheson 
and Gardner (1980) 

Ouration of exposure [years] 

In the study of US insulators, follow-up has continued for 50 years since first 
exposure; the excess relative risk for lung cancer by year since first exposure is given in 
Table 3.10, and by age at first exposure in Table 6.4. 

From Table 3.10 one can see that the relative risk reaches a plateau some 15 years 
after start of exposure, where it remains indefinitely. There is some indication that 40 
years or more after exposure starts the relative risk begins to decrease. The significance 
of this fall is doubtful, however, since one might expect the attrition of smokers, 

Table 6.4 Expected and observed numbers of deaths from 
lung cancer among 17800 asbestos insulation workers, 1 
January 1967-31 December 1971; distribution by age at 
onset of exposurea 

Age at onset Deaths from lung cancer 
of exposure 
(years) ~xpected" Observed Ratio 

a From Selikoff et al. (1973) 
"Expected deaths are based upon age-specific death rate data of the US 

National Office of Vital Statistics. Rates for 1968-1971 were extrapolated from 
rates for 1961 -1967. 
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particularly heavy smokers, to be even more rapid in this cohort than in the general 
population (see Chapter 3). This differentizl attrition would lead to an apparent fall of 
the excess relative risk of lung cancer with time, and contribute to the observed 
decrease. As mentioned earlier, the effect of stopping exposure is difficult to assess for 
asbestos. As seen in Table 6.4, the relative risk is roughly independent of age at first 
exposure, although a slight fall with increasing age is seen. Since lung cancer rates 
increase rapidly with age, the absolute excess risk rises rapidly with age at first 
exposure. 

This overall behaviour has been summarized by saying that the excess relative risk of 
lung cancer increases linearly with duration of exposure and, for given duration of 
exposure, is independent of age at first exposure or time since first exposure. This 
behaviour should be contrasted with that seen for cigarette smoking, where the 
absolute rather than the relative excess risk was related to duration of exposure. 

(d) Radiation and leukaemia 

The association of leukaemia with radiation exposure was the original focus of 
several of the large cohort studies initiated in the 1950s, notably the study of patients 
with ankylosing spondylitis (Court Brown & Doll, 1965) and of women with cervical 
cancer (Hutchison, 1968). The study of atomic bomb survivors was, of course, much 
more broadly based, the Life-Span Study representing a systematic search for all 
mortality differentials associated with radiation, but the excess of leukaemia excited 
interest first. 

In both the atomic bomb and the ankylosing spondylitis studies, the excess mortality 
from leukaemia was greater and occurred earlier than the excess mortality due to other 
malignancies. A joint analysis has been made of these two studies investigating the 
effects of age at exposure and time since exposure (Darby, 1984; Darby et al., 1985). 
The excess of leukaemia reaches a peak in the first five years after exposure, and then 
declines steadily. Little excess is seen among the ankylosing spondylitis patients more 
than ten years after exposure, whereas among the atomic bomb survivors, with a 
higher initial risk, an excess is still seen more than 20 years after exposure. 

Little variation in relative risk is seen with age at exposure among the ankylosing 
spondylitis patients, nor among the atomic bomb survivors 15 years of age or more at 
exposure. Atomic bomb survivors less than 15 years of age at exposure, however, 
suffered a markedly higher risk. Among this latter group, the risk rose more rapidly, 
attained a higher peak, and then fell off more sharply (Beebe et al., 1977; Ishimaru et 
al., 1979; Committee on the Biological Effects of Ionizing Radiation, 1980). 

The excess of leukaemia is confined to acute and nonlymphocytic leukaemia, none of 
;he studies showing an excess of chronic lymphocytic leukaemia. In the study of 
ankylosing spondylitis patients, in which analyses have been based on death certificates 
and comparison with general population mortality rates, no formal analyses have been 
made by leukaemia subtype, since no population mortality rate is available. In the 
original analyses, however, none of the leukaemia deaths was attributed to the chronic 
lymphocytic type. Among the atomic bomb survivors, mortality rates for the subtypes 
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of leukaemia can be studied since the comparison is with the lightly exposed (less than 
10 rads) members of the cohort. 

The follow-up of women irradiated for cancer of the cervix (Day & Boice, 1983) 
used cancer occurrence as an endpoint, and incidence rates from cancer registries as 
the basis for comparison. These data could therefore also be examined by subtype of 
leukaemia, illustrating the advantage of incidence rather than mortality as an endpoint, 
i.e., the ability of cancer registries to produce accurate population rates by finer disease 
categories. The results are shown in Figure 6.7. The excess risk reaches a peak in the 
first five years- although it is more modest than the peak seen in the ankylosing 
spondylitis series - then falls away to inappreciable levels ten years or more after 
exposure. The risk for chronic lymphocytic leukaemia is, if'anything, below that of the 
general population. 

Comparison of the excess risk seen in these three studies presents an apparent 
paradox. Both the cervical cancer patients and the ankylosing spondylitis patients 
received very high doses of radiation to part of the active bone marrow (several 
thousand rads). In contrast, the larger excess risk among the atomic bomb survivors 
was induced by a few hundred rads of whole-body irradiation, all the active bone 
marrow receiving similar exposure. The dose-response curve appeared approximately 
linear, as shown in Figure 6.8. [We shall leave aside in this discussion the different 
effects seen in Hiroshima and in Nagasaki, between sexes and between the neutron and 
gamma-ray components of the ,exposure. Resolution of these differences awaits new 
dose estimates (see, for example, Fujita, 1984) and may also depend on differential 

Fig. 6.7 Observed to expected ratios of nonlymphocytic and acute leukaemia among 
patients with invasive cervical cancer treated with radiotherapy by time since 
diagnosis of cervical cancer; 80% confidence intervals presented. From Day 
and Boice (iS33) 
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Fig. 6.8 Leukaemia deaths among Japanese survivors of the atomic bomb explosion, 
per 100000 persons per year by (T65) dose and city. From Beebe et al. 
(1977) 
120 r 
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accuracy of the dose estimation (Gilbert, 1984)l. If this linear dose-response derived 
from the atomic bomb survivors could be extrapolated to higher dose levels, one might 
expect considerably larger risks in the two studies of irradiated patients. In the cervical 
cancer study, for example, one would have expected several hundred excess leuka- 
emias rather than the 20 or so actually observed. 

In the ankylosing spondylitis study, using as a measure of dose the mean exposure to 
the active bone marrow, no increase in risk with increasing dose is seen (Smith & Doll, 
1982) (Fig. 6.9). The proposed explanation for the observed lack of linear increase in 
the dose-response curve is that radiation can sterilize cells as well as transform them, 
the sterilized cells having no potential for malignant growth. Sterilization is the major 
effect at high doses, transformation at lower doses. Incorporating cell sterilization into 
a dose-response model (see Brown, 1977) has led to expressions such as 

Excess relative risk = Dose exp (&Dose - pdose2). (6.5) 

Using this model with average dose to the active bone marrow gave a reasonable fit to 
the data of Figure 6.9. On occasion, however, it might be preferable to integrate 
expression (6.5) over the distribution of dose to the active bone marrow rather than to 
use simply the average dose. Such a calculation would, of course, require accurate 
determination of the dose distribution. One can see that this approach might be more 
suitable for the cervical cancer patients, among whom most of the active bone marrow 
received either a dose of which the major effect is cell sterilization, or a dose too low to 
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Fig. 6.9 Radiation-leukaemia dose-response curve seen among ankylosing spondyl- 
itis patients given one course of radiotherapy. From Smith and Doll (1982) 

Meall bone-marrow dose (rad) 

affect risk appreciably. Integrating expression (6.5) over a dose distribution of this type 
would clearly lead to a low predicted excess risk, as observed, whereas use of the 
average dose would predict considerably higher risk levels. [In fact, the results of a 
case-control study of leukaemia within the cervical cancer cohort indicate the 
importance of a cell-killing term in the dose-response relationship (M. Blettner, 
personal communication, 1986) .] 

These results demonstrate the importance of using available biological information 
to guide the choice of model that one uses. Uncritical use of models chosen for their 
statistical simplicity can lead to misleading or paradoxical results. To quote Pike 
(1985), 'At times, we may need to be more subtle in our approach.' 

(e) Radiation and breast cancer 

Several studies have examined the excess risk for breast cancer seen in groups of 
women exposed to radiation either for medical purposes or as a consequence of the 
atomic bomb explosion. The two largest studies are of the atomic bomb survivors and 
of Canadian women with tuberculosis examined by fluoroscopy (Howe, 1982). Two 
other widely quoted studies are of fluoroscopy-treated patients in Massachusetts (Boice 
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& Monson, 1977) and of radiation-treated mastitis patients in New York (Shore et al., 
1977). As described in Appendix IB, there has been an extensive effort to determine 
the dose received by each atomic bomb survivor, and for the cohorts of women 
irradiated for medical purposes considerable documentation of individual dose levels 
has been available. Although the duration of radiation treatment was relatively short 
when compared to the duration of some occupational exposures, being almost always 
less than five years, there were considerable differences in the degree of dose 
fractionation. In the atomic bomb survivors, the total dose was received from one 
explosion, whereas in the fluoroscopy series, a woman may have received several 
hundred fluoroscopies over a number of years, and in the mastitis series women may 
have received five to ten exposures over a period of weeks. No major difference has 
been seen in breast cancer risk attributable to the degree of fractionation, and analyses 
have been based on the total dose received. The three determinants of risk that have 
been studied in some detail are the total dose, the time since the dose was received, 
and the age at which the dose was received. Since the underlying breast cancer rates in 
the populations studied vary widely - for example, between Japan and the USA or 
between age groups - attention has also been given to the problem of which effect 
measure is more appropriate, relative excess risk or absolute excess risk. The two 
measures give estimates of lifetime risk which differ considerably, as discussed in 
Chapter 4. 

The Massachusetts fluoroscopy study, the New York study of mastitis patients and 
the study of atomic bomb survivors have been analysed jointly (Land et al., 1980). A 
number of models have been fitted, expressing the mortality rate of breast cancer, I, as 
a function of radiation dose, D, in particular 

I(D) = a. + a l D  A. 

I(D) = a. + a l D  + a 2 ~ 2  B. 

I(D) = (a, + al D )  exp (- p , ~ ~ )  C. 

I(D) = (ao  + a l D  + a2D2) exp ( - p , ~ ~ )  D. 

The last two models introduce a possible effect of cell killing, as discussed in the 
previous section. In the mastitis study, model C was an improvement over model A 
(Land et al., 1980), whereas in a separate analysis of the Canadian fluoroscopy study 
model A fitted well in the high-dose range (Miller et al., 1987). The difference in the 
shape of the dose-response curve between these two studies in the high dose range 
(400-1000 rads) might be attributed to the higher dose rate, i.e., lower degree of 
fractionation, in the mastitis study. Apart from high doses in the mastitis series, model 
A gave an adequate fit to the different series of data, and the main findings of the 
different analyses can be summarized as follows: 

(i) The dose-response appears linear throughout the range of dose observed (see 
Figure 6.10). A suggestion of a downturn at high dose levels, which might be 
predicted on the basis of models incorporating cell killing, is seen in the mastitis 
series, but not in the atomic bomb survivors nor in the Canadian fluoroscopy 
series. 
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Fig. 6.10 Increase in relative risk for breast cancer as radiation dose increases in the 
Canadian fluoroscopy (0) and atomic bomb (+) studies 

Dose to breast tissue (rad) 

(ii) The excess relative risk appears some ten years after exposure, and continues 
thereafter at a roughly constant level. Even after 40 years, there is no indication of 
a diminution (see Figure 6.11). The absolute excess risk increases with time since 
exposure. 

(iii) The excess relative risk is greater at younger ages at exposure, with little excess 
seen among women over 40 years of age when irradiated (Howe, 1982). Recent 
results from the atomic bomb survivors and from children irradiated for an 
enlarged thymus suggest that the excess relative risk is even higher among those 
exposed when aged 0-9 than among those aged 10-19 at exposure. 

(iv) The absolute excess per unit dose in young Japanese women was similar to that 
seen in white American women, the excess relative risk being correspondingly 
larger. This finding is in contrast to the constancy of relative risk throughout the 
period of follow-up noted in point (ii) above, indicating that hypotheses of 
constant relative or constant absolute excess risks are both simplistic, and neither 
forms a sound basis for extrapolating results from one population to another. 

Cf) Radiation and bone turnours 

This example contrasts the effect seen in two different studies of the different 
isotopes of radium, which after ingestion have been incorporated into the bone tissue. 
The first study is of radium dial painters (Rowland & Lucas, 1984), who by habitually 
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Fig. 6.11 Relative risk for breast cancer as a function of time since first exposure to 
radiation in the Canadian fluoroscopy study (Howe, 1982) 
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licking their paint brushes absorbed quantities of 226Ra. The half life of 2 2 6 ~ a  is long 
(1600 years), so that exposure to .the decay products continued virtually at constant 
levels after absorption of the radium. The effect on subsequent risk is shown in Figure 
6. 12A, with little indication of a decline in the number of cases even after 40 years. It is 
thought that most of the intake of 2 2 6 ~ a  occurred in the first ten years after entry, since 
brush-licking apparently stopped in 1926. The dose-response has also received close 
attention in this study, a function of the form 

(a + p dose2) exp (-A dose) 

giving the best fit. As for the leukaemia dose-response, a cell sterilization term 
improves the fit. 

The second study investigated ankylosing spondylitis patients in the Federal 
Republic of Germany who were given 2 2 4 ~ a  as treatment (Mays & Spiess, 1984). 2 2 4 ~ a  
has a half-life of several days, so that exposure to the decay products effectively ceases 
a few days after treatment stops. The subsequent risk of bone tumours is shown in 
Figure 6.12B7 in which a wave pattern to the excess risk is discernible, similar to that 
seen for leukaemia. The comparative behaviour of bone tumours and leukaemias in 
this study is given in Figure 6.13. Indications of a similar wavelike pattern to the excess 
risk of bone tumours are seen after short-term exposure to external gamma rays (Day 
& Boice, 1983; Kaldor et al., 1987). 

These two examples illustrate the care that is required in defining time since 
exposure; the relationship between tissue dose and external exposure requires close 
attention. 
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Fig. 6.12 (A) Bone sarcoma appearance times after exposure to 2 2 6 ~ a  (half-life, 1600 
years). (B) Bone sarcoma appearance times after exposure to 2 2 4 ~ a  
(half-life, 3.6 days). From Mays and Spiess (1984) 

Time from first exposure to tumour diagnosis [years] 

Fig. 6.13 Appearance times of bone sarcomas in patients exposed to a short half-life 
radium isotope (e) and of leukaemias in the atomic bomb survivors (A). 
From Mays and Spiess (1984) 

Time after irradiation [years] 



252 BRESLOW AND DAY 

( g )  Bladder cancer and exposure to benzidine 

The purpose of this example (Zavon et al., 1973) is to illustrate the point that, even 
with a very small cohort and no clear measure of exposure (environmental measures of 
exposures related to different job categories varied by a factor of lo4 in this study), an 
illuminating description of the excess risk can be given. The study relates to a small 
group of men employed in the manufacture of benzidine. Other exposures were 
recorded, but none represented a hazard for bladder cancer comparable to that of 
benzidine. Of the 28 men employed, 15 developed bladder cancer - a remarkable 
excess. Of even greater interest is to plot the cumulative increase in risk with years of 
employment for those who remained continuously employed, deriving Nelson plots 
(see Figure 6.14 and equation 5.16) such as are commonly used in the analysis of 
skin-painting experiments of carcinogenicity (IARC, 1982b). The cumulative risk of 
bladder cancer is 50% at 15 years, rising to 100% after 25 years. In this situation, such 
a presentation of the data essentially contains all the information in the results 
pertaining to bladder carcinogenesis. It is certainly much more informative than a 
statement that 15 bladder cancers were observed in a cohort of 28 workers, with an 
expected number (not given in the paper) of the order of 0.1. 

Fig. 6.14 Cumulative absolute risk of developing a bladder tumour as a function of 
duration of continuous exposure to benzidine (from data of Zavon et al., 
1973). From IARC (1982b) 
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(h) Lung cancer among US uranium miners 

The excess lung cancer risk seen among US uranium miners has been the subject of a 
number of reports (Waxweiler et al., 1981), the most recent of which takes the 
follow-up to the end of 1977. Whittemore and McMillan (1983) focused their analysis 
on the joint effects of radiation (mainly alpha particles emitted during the radioactive 
decay of radon and its daughter products) and cigarette smoking. A case-control 
approach was adopted in which, for each lung cancer death, four control subjects were 
randomly selected from among those born within eight months of the case and known 
to survive him. The joint effects of radiation and smoking were modelled in a number 
of ways. First, radiation exposure was expressed as cumulative exposure in terms of 
working level months (WLM), based on extensive environmental measures of radon 
daughter levels, and cigarette smoke exposure was expressed in terms of total packs of 
cigarettes ever smoked (PKS). Both cumulative exposures were truncated ten years 
before the death of the lung cancer cases, and, for controls, ten years before the death 
of the matched case, as an approximate way of incorporating latency. 

Since a case-control design was used, the relative risk was taken as the effect 
measure. A number of models were fitted, to investigate the following questions: 

(1) Is the combined effect of radiation and smoking better described in additive or 
multiplicative terms? 

(2) What is the shape of the dose-response curve? 
(3) Does total amount smoked or average amount smoked per day provide a simpler 

description of tobacco-associated excess risk? 

To investigate the first two issues, cumulative exposure to both factors was 
categorized. Writing the excess relative risk in the ith radiation category as Pi,, and in 
the jth smoking category as Pi,,, alternative models representing multiplicative and 
additive joint action were fitted 

RRi, = (1 + Pi, R) (1 + Multiplicative 

RRi, = 1 + Pi, R + Pj,s Additive 

and the two models compared with one describing general joint action 

where RR, is the risk for individuals in category i for radiation and category j for 
smoking, relative to those in the baseline category for both exposures. 

The multiplicative model was not significantly worse than the general model, 
whereas the additive model fared badly. Thus, although the additive and multiplicative 
models were not compared directly, the latter certainly appeared to be preferable. This 
finding is in contrast to the interactive effect on lung cancer of smoking and radiation 
seen in the atomic bomb survivors study, which appeared to be additive or even 
subadditive (Prentice et al., 1983). In the one case, there was continuous exposure to 
alpha particles, and in the other there was instantaneous exposure to gamma rays; 
whether this difference reflects different measurement errors or more basic differences 
in mode of joint action is unclear. 
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To investigate the shape of the dose-response curve, cumulative radiation exposure 
and cigarette smoking were introduced as quantitative variables. A number of models 
were considered, including 

RR = (1 + PIWLM)(l + P2PKS) 

RR = 1 + P1WLM + P2PKS 

RR = exp (PIWLM + P2PKS) 
(6.6) 

RR = (WLM + BGR)~~(PKS + B G S ) ~ ~ ,  

where BGR and BGS are background rates for radiation and smoking exposures, 
respectively. 

The first of these four models fit as well as the previous multiplicative model using 
categorized exposure variables, whereas the maximum achieved by the likelihood 
function under the other models was markedly less. Adding quadratic terms to give 
models such as 

did not improve the fit appreciably. 
The relative risk can thus be taken from these data to rise linearly with increasing 

cumulative exposure to each variable, the effect of the two variables combining 
multiplicatively. 

Models using average number of cigarettes smoked per day were also investigated, 
but performed less well than the models given above using cumulative pack-years of 
cigarettes. 

No effect on the relative risk of lung cancer was seen for age at start of underground 
mining after controlling for age at lung cancer death, year of birth and cumulative 
exposure to radiation and smoking. 

It is interesting to note that total number of packs of cigarettes smoked is the most 
useful single measure of smoking, in contrast to the British doctors study where risk 
was modelled in terms of the number of cigarettes smoked per day. In that study, 
however, absolute rates were modelled, whereas relative rates were modelled in the 
miners study. If, among continuing smokers, absolute risk is proportional to: 

(Cigarettes per day)(Duration of ~mok ing )~  

and the baseline rates are proportional to the fourth power of age, then simple 
calculations show that the relative risks in different age groups are approximately equal 
among people who have smoked the same total number of cigarettes (up to ten years 
before death). Assuming that smoking started at 20 years of age gives Table 6.5, in 
which column 3 gives rates at different ages for smokers who smoke the same number 
of cigarettes per day, and column 5 gives rates at different ages for smokers who have 
smoked the same total number of cigarettes, excluding the last ten years. 

The relative risks in the last column, which relates to total amount smoked truncated 
ten years before death, are almost constant, whereas in column 4 the risks vary 
fourfold (see Table 2.6 of Volume 1). The range of ages covers the great majority of 
deaths seen in the miners study so that a one-parameter model using total dose 
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Table 6.5 Comparison of the relative risk of lung cancer at different 
ages for continuing smokers classified either by number of cigarettes 
smoked per day (columns 3 and 4) or by total number of cigarettes 
smoked (columns 5 and 6) 

Age at Rate among Rate among Relative Rate among Relative 
death non- smokers risk smokers risk 
(years) smokers (constant (col. 31col. 2) (constant (col. 51col. 2) 

no. of total 
cigslday) no. of cigs) 

(1) (2) (3) (4) (5) (6) 

Where k =  cy,la. 

is sufficient to describe smoking-associated variation in relative risk for the entire 
cohort. 

This example indicates that the metameter of dose to use to achieve the simplest 
explanation may differ depending on whether absolute or relative risks are being 
investigated. 

The preceding examples have demonstrated the important role in determining risk 
that may be played by time since first exposure, age at first exposure, and duration of 
exposure. In terms of defining metameters of dose, both dose rate and cumulative dose 
can offer-advantages, depending in part on whether absolute or relative risks are being 
described. The use of duration of exposure can be considered a surrogate measure of 
cumulative dose in studies in which dose levels are inadequately measured. 

In these examples we have not emphasized time since exposure stopped as an 
independent time variable, and it can obviously be derived from time since first 
exposure and duration of exposure. There may, however, be occasions on which it is 
the variable of major interest as an indicator of the effect to be expected from 
intervention measures. At times, also, risk may be more appropriately modelled in 
terms of duration of exposure and time since stopping exposure, so that time since first 
exposure would enter into the model only as their sum. Thus, for example, if relative 
risks are being modelled, then the lung cancer-cigarette smoking relationship for 
ex-smokers might be more simply modelled in terms of time since quitting and 
cumulative amount smoked (see Table 6.1), rather than in terms of a model 
incorporating time since smoking started. 
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6.3 Multistage models of carcinogenesis 

A conceptual framework that facilitates understanding of the relationship between 
the different variables discussed in the previous section is provided by multistage 
models of carcinogenesis. A number of different models have been proposed at one 
time or another; we concentrate mainly on one of the simplest - the Armitage-Doll 
model (Armitage & Doll, 1961). Some of the details of the model may be 
uninterpretable biologically, but the broad features have gained increasing biological 
and experimental support in the past decade. It is these features that have value as an 
interpretive tool in epidemiology. It is not our purpose here to review in detail the role 
of multistage models, or the experimental evidence supporting the nature of the 
different stages (see, for example, Borzsonyi et al., 1984). The aim of this section is 
simply to indicate the aid to interpretation that these models can bring. 

The Armitage-Doll model supposes that a cancer arises from a single, originally 
normal cell, which undergoes a series of transitions, after the last of which it is capable 
of uncontrolled malignant replication. The number of cells at risk at the start is 
assumed to be large and the probability of a transition assumed to be small for any 
individual cell. Cells are assumed to be in the initial, i.e., normal, stage at time zero, 
and k transitions are assumed to be required for malignancy. 

Suppose the probability of a transition from stage i to stage i + 1 in time interval t, 
t + 6t is given by Ai+,(t)6t, and that all transitions are independent of each other. 
Then, denoting by Ni(t) the number of cells in stage i at time t, we can write down an 
expression for the rate of change of &(t) with time, namely 

for i = t, . . . , k. 
We assume that transitions are rare, and that at time t = 0 

Putting &(O) greater than zero for i > O  would be a way of modelling genetic 
predisposition to cancer, as proposed by Knudson (1971). Since transitions are 
assumed to be rare, good approximate solutions to this set of differential equations are 
given by the simpler set of equations 

f o r i = t ,  . . . ,  k. 
The degree of approximation involved in (6.7) has been discussed by Moolgavkar 

(1978). For many tissues, when exposure consists largely of the background common to 
most individuals in a particular society, the transition rates may vary little with time. 
We then have Ai(t) = Ai and 

N(t) o: ti 
for i = 1, . . . , k. 
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The probability that a cancer occurs is the probability of a transition from stage k - 1 
to stage k. If the transition rates are constant, this probability is simply proportional to 
the number of cells in stage k - 1, so that the incidence rate at time t, I(t) say, is 
proportional to Nk-l(t), given by 

As is well known, plotting the logarithm of incidence against the logarithm of age 
results for many tumours in a straight line with a slope of between 4 and 5 (see Volume 
1, Chapter 2, page 61; and Cook et al., 1969), indicating that (6.8) is a good description 
of the background age-specific rates for many tumours in a variety of different 
populations, with k equal to 5 or 6. 

This simple multistage model gives a reasonable description of the epidemiology of 
many nonhormonally-dependent cancers of epithelial origin, and can be modified 
straightforwardly to incorporate age-dependent hormonal changes. More general 
models have been developed which take account of time-varying cell kinetics and 
which fit the epidemiological behaviour of a wider range of malignancies, described, 
for example, by Moolgavkar and his coworkers (e.g., Moolgavkar et al., 1980), to 
which the reader is referred for further details. A review by Knudson (1985) gives a 
good description of the biological background. 

We now turn our attention to the effect on cancer incidence of exposure additional 
to the background, to examine how the types of behaviour described in the previous 
section can be predicted by multistage considerations. 

(a) Implication for the effect on tumour incidence of exposures of limited duration 

The effect of changing exposures is to change the transition rates given in expression 
(6.7). Thus, suppose that, during an interval extending from time to to time t,, the 
transition rates increase from Ai to Ai + pi, for i = 1, . . . , k. The extent to which the 
transition rates are modified, given by the pi, can be taken to represent the mode of 
action of the exposure in augmenting risk for a cancer. For example, when studying the 
induction of tumours on mouse skin by initiation-promotion experiments, initiating 
agents would be associated with large values of pl ,  whereas promoting agents would be 
associated with relatively large values of pk-, or pk. 

The cancer incidence rates in times after to would then be proportional to Nk-,(t), 
given by: 

where 

AT(t) = Ai + pi for to < t < tl 
= Ai otherwise. 

This expression is a polynomial of degree k - 1 in t. Attempts have been made to fit 
explicitly these expressions both to experimental (Lee, unpublished data, as quoted by 
Whittemore & Keller, 1978) and to epidemiological data (Thomas, D.C., 1982). Since 
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no specific meaning can be given to the individual parameters, and epidemiological 
data will hardly ever be extensive or detailed enough to permit much precision in joint 
inferences for the full set of pi, this approach has not been widely adopted. It has been 
more common to use expression (6.9) in a heuristic way, to examine the behaviour 
predicted by the Armitage-Doll model in a few simple situations with plausible 
biological interpretation and to assess qualitatively the concordance between the 
observed epidemiological behaviour and the various paradigms (Day & Brown, 1980). 
Examination of these simple situations also provides insight into which variables to use 
to describe the effect of time on risk. 

In the experimental situation, the separate effects of initiation and promotion have 
been demonstrated in the development of tumours at many sites (Borzsonyi et al., 
1984). Although these terms have specific meanings, which it would be hazardous to 
apply outside a well-defined experimental situation, one might interpret them as 
indicating in a more general sense the possibility of action at early or at late stages in 
the carcinogenic process. We therefore examine the effect on incidence rates that this 
multistage model would predict for agents which act predominantly at early stages and 
for agents which act predominantly at late stages. An interesting discussion of the 
relationship between the terms 'early-stage' and 'late-stage', as used by epidemiolo- 
gists, and 'initiation' and 'promotion', as used by experimentalists, is given by J. Peto 
(1984). 

We consider an early-stage agent to be one that affects only the first transition rate, 
i.e., only p, is nonzero, and a late-stage agent as one for which only pkAl is nonzero. It 
should be noted that a late-stage agent is taken to affect not the last but the 
penultimate transition. An agent that alters the rate of transition into the cancerous 
state would have an immediate effect on cancer rates, which is rarely observed. An 
effect on the penultimate transition appears to correspond to more frequently observed 
behaviour. We take k equal to 5, as suggested by Cook et al. (1969), to examine 
arithmetically the predicted behaviour. 

For an early-stage carcinogen, acting between times to and t,, we have, from 
expression (6.9), 

(i) before exposure (t < to), 
I(t) cc t4. There is clearly no excess risk and the expression is the same as (6.8). 

(ii) during exposure (to < t < t,), 
I(t) a t4 + P(t - to)4. The excess absolute risk is proportional to a power of duration 

of exposure (or, equivalently, time since first exposure); the excess relative risk is given 
by P(1- to/t)4, which rises slowly to its asymptotic value. of P. (The quantity ,6 
represents the potency of the extra agent, relative to the background, and is given by 
the ratio pl/Al.) 

(iii) after exposure (t > tl), 
I(t) cc t4 + +bt  - to)4 - (t - Q4). The excess absolute risk is dominated by the term 

(t - to)4, proportional to a power of time since first exposure. The excess relative risk is 
dominated by the term P(1- to/t)4, as if exposure had continued. The effect of the 
term (t - t1)4 in reducing the excess relative risk comes into play only slowly. 
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For a late-stage carcinogen acting between times to and t , ,  we have 
(i) before exposure ( t  > to),  

I ( t )  a t4 when t  > to ,  as before. 

(ii) during exposure ( to < t  < t , ) ,  
I t )  t4 + ( t 4  - t i ) ,  where y  = p4/14 is the potency of the extra late-stage agent, 

relative to the background. The excess relative risk is given by y { l -  ( t o / t ) 4 ) ,  which 
rises rapidly to a plateau at the value y .  

(iii) after exposure ( t  > t , ) ,  
I ( t )  a t4 + y ( t f  - t:). The excess absolute risk remains indefinitely at a constant value. 

The excess relative risk falls proportionately to a power of t ,  after exposure stops at t , .  
The greater the age at which exposure stops, the more gradual is this fall. 

The different effects on subsequent incidence rates thus described are shown 
schematically in Figures 6.15A and 6.15B. In Figure 6.15A, the effect of starting a 
continuous exposure at age 30 years is shown for an early-stage and a late-stage agent. 
In Figure 6.15B, the effect is shown of stopping at age 40 an exposure that has been 
operating throughout life, contrasting the effects of early- and late-stage agents. Risk 
rises more slowly after exposure starts, and falls more slowly after exposure ceases. As 
might be expected, the effect of changing exposure to early-stage agents is greatly 
delayed compared to the effect of changing exposure to late-stage agents. Thus, 
intervening to reduce exposure to late-stage agents will have a relatively rapid effect, 
whereas permitting even short-term exposure to early-stage agents will have long-term 
consequences. 

There are also differences between early- and late-stage agents in the effect of the 
age at which exposure starts, as can be seen by the expressions given above. For an 
early-stage agent, the 'absolute excess risk depends only on time since first exposure 
(for continuing exposures) and is unaffected by age at first exposure. Since the 
background rates are rising with age, relative risks decrease with age at first exposure. 
By contrast, for continuous exposure to late-stage agents, the absolute excess risk 
increases with a power of age, and the excess relative risk, proportional to 1 - ( to / t )4  is 
roughly independent of age at first exposure once t  is appreciably greater than to. 

For an agent that affects both early- and late-stage transitions, acting between times 
to and t , ,  the behaviour is a mixture of the two simpler models, given as follows: 

before exposure I ( t )  a t4, t  < to ,  

during exposure I ( t )  t4 + P(t  - + y(t4 - t:) 
+ P ~ ( t - t ~ ) ~  for t O < t < t l  

and after exposure I ( t )  a t4 + P { ( t  - - ( t  - t ~ ) ~ )  + ~ ( t ?  - t i )  
+ P y ( t ,  - to)4 for t l  < t. 

The last two expressions have terms for the early-stage effect, the late-stage effect 
and both effects acting together. Which term predominates depends on the relative 
magnitudes of the early-stage effect, P ,  and the late-stage effect, y ;  but if both effects 
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Fig. 6.15 (A) Age-specific cancer incidence for a cohort continuously exposed to a 
carcinogen from 20 years of age. (B) Effect of stopping exposure at 20 years 
of age when carcinogenic exposure started at birth: age-specific incidence. 
From Day and Brown (1980) 

Age (years ; log scale] 

I I 

20 40 60 80 

Age [years ; log scale] 

are appreciable then the combined effect, .the term with by, would tend to dominate. 
In this case, while exposure lasts, the behaviour of the excess risk is dominated by the 
term by(t - to)4, so that it resembles an early-stage agent. After exposure stops, the 
excess risk is dominated by the term /3y(t, - and so resembles a late-stage agent. 

The distinguishing features of early- and late-stage agents, and those that affect both 
stages, are summarized in Table 6.6. 
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Table 6.6 Summary of the qualitative features of evolving risk following exposure to  early-stage 
and late-stage carcinogens 

Both stages affected (about 
equally) 

- - 

Evolution Time since first exposure of  
of risk prime importance. 
during Relative risk rises slowly 
exposure to  reach a plateau. Age at 

first exposure does not 
modify absolute excess 
risk. Relative risks decline 
with increasing age at 
first exposure, for given 
duration of exposure. 

Age of primary importance. 
Relative risk rises rapidly 
t o  reach a plateau. 
Absolute excess risk 
increases with increasing 
age at first exposure. 
Relative risks nearly 
independent of age at 
first exposure, for given 
duration of exposure. 

Behaviour may be more like 
an early-stage agent with 
main effect related to t ime 
since start of exposure 
(i.e., duration of 
exposure); absolute 
excess risk not related t o  
age at start of exposure. 

-- - 

Evolution Absolute excess risk 
of risk increases for many years 
after as i f  exposure we're 
exposure continuous. Relative risk 
stops increases after exposure 

stops, then remains at a 
plateau. 

Absolute excess risk Behaviour may be more like 
remains constant at level a late-stage agent with 
attained when exposure absolute excess risk 
stops. Relative risk remaining at level 
declines rapidly. attained when exposure 

stopped, i.e., related t o  
duration of exposure. 
Relative risk declines 
rapidly. 

6.4 Interpretation of epidemiological data in terms of multistage models 

One can now review some of the epidemiological behaviour described earlier in the 
chapter in the light of the multistage models of the preceding section. One should 
stress that the aim is not to classify the agent itself, but, more modestly, to indicate 
how the agent acts on a particular organ, in conjunction with whatever other 
carcinogenic factors may be present. Classification of carcinogens by their mode of 
action is still considered to be premature (IARC, 1983). 

(a) Mesothelioma and asbestos 

The induction of mesothelioma by asbestos corresponds closely to that expected 
from early-stage effects. The absolute excess risk is independent of the age at which 
exposure starts, and can be adequately described solely in terms of a power of time 
since first exposure (Peto, J. et al., 1982). 

(6) Lung cancer and smoking 

The rates of lung cancer among smokers and ex-smokers are those to be expected if 
cigarette smoke affects both early and late stages. The absolute excess risk is well 
described in terms of a power of duration of exposure, both for those continuing to 
smoke and for those who have stopped smoking (Doll, 1971, 1978). A large 
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case-control study has also shown that the greater the age at which smoking stopped, 
the smaller the fall in relative risk after quitting smoking (Lubin et al., 1984). 

(c) Lung cancer and asbestos 

Asbestos behaves as a late-stage agent in the induction of lung cancer, the absolute 
excess risk rising rapidly with increasing age at first exposure and the relative risk 
remaining roughly constant. The risk increases much sooner after the start of exposure 
than does the risk for mesothelioma. The fact that the excess relative risk remains at 
roughly constant levels for several decades after external exposure stops is not 
consistent with a late-stage effect, but, as mentioned earlier, cessation of external 
exposure is not synonymous with stopping tissue exposure, since the asbestos fibres 
remain in the body. 

(d) Radiation and breast cancer 

The multistage models considered so far in this chapter have assumed homogeneity 
of the transition rates over age, implying that there is no age-related change in the 
susceptibility of the target tissue. This assumption must be relaxed for hormonally- 
dependent organs such as the breast. Modification of the assumption to incorporate the 
hormonal dependence of breast tissue leads to a model for breast cancer, which fits the 
epidemiological behaviour well (Moolgavkar et al., 1980; Pike et al., 1983). . These 
modifications include decreasing susceptibility to early-stage effects with increasing 
parity, and hence in general with increasing age, and the existence of endogenous 
late-stage agents that are related to ovarian activity and so decrease at the menopause. 
The effect of short-term exposure to ionizing radiation is mainly that of an early stage 
agent, since susceptibility to early-stage events decreases with age. Thus the excess 
relative risk decreases with increasing age at exposure and, after exposure of short 
duration, rises to a plateau where it remains for at least 40 years. The excess risk 
induced by radiation increases more slowly with time the lower the age at exposure, 
and radiation-induced breast cancers occur only at ages when breast cancer arises 
spontaneously. Thus, for girls exposed when under ten years of age, the increase in 
incidence may take 30 years to become apparent, whereas for women over 30 years of 
age at exposure, an excess risk becomes appreciable within ten to 15 years. This effect 
of age may reflect the age-related changes in the strong endogenous late-stage factors. 

6.5 Implications for the effect of dose on cancer incidence 

(a) Form of the dose-response relationship 

In the straightforward formulation of a multistage model given earlier, the incidence 
rate at age t is proportional to the product of the transition rates: 
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If the transition rates are increased by an additional exposure operating throughout life 
(Ai increasing to Ai + pi), then the incidence rates will be proportional to 

It is often assumed that the transition rates are linearly related to dose rate, d, say, 
expressed, for example, in units of mg per kg per day; that is, one can express each pi 
as pi = Pid. This assumption has been the basis of much work on low dose 
extrapolation in the USA (Crump & Howe, 1984). The excess relative risk can then be 
expressed as a polynomial in dose rate of degree k or less with positive coefficients, at 
all ages. The excess absolute risk will, of course, increase steadily with a power of age. 

Although fitting of low-order polynomials of dose rate is common practice, their 
uncritical use without prior examination of the general shape of the dose-response 
curve requires caution, for several reasons. First, most of the exposures in which we 
are interested are not continuous throughout life. They are often of limited duration, 
starting perhaps in early adult life, and, as seen in previous sections, the effect on 
excess risk may be more complex. Although for a given period of exposure the form of 
(6.9) indicates that the effect of dose is still through a low-order polynomial, the excess 
risk is dominated by the duration of the period of exposure and the age at which it 
occurred. Second, dose is seldom measured with great accuracy, and errors of 
measurement modify the observed dose-response relationship. More importantly 
perhaps, the observed exposure rates may be related only indirectly to tissue exposure 
rates. Thus, the dose-response of oesophageal cancer (see Volume 1, Chapter 6), and 
perhaps also bladder cancer, with cigarette smoking expressed in terms of cigarettes 
per day, appears to be sublinear, represented better by a square root transformation 
than by a low-order polynomial. 

Third, the mechanism of action of the agent may be different from that assumed in 
this derivation of expression (6.10), and a dose-response curve of quite different shape 
may be appropriate. Two examples suffice to illustrate the point. The relative risk for 
oesophageal cancer rises exponentially with daily alcohol consumption (see Volume 1, 
Chapter 6). The mechanism of action of alcohol is at present unclear - apparently, it is 
not mutagenic and the oesophagus would probably not be exposed to its mutagenic 
metabolites, but it is difficult to see how an exponential dose-response would be 
generated by the mechanism described above. In the experimental field, the dose- 
response in CF1 mice (Tomatis et al., 1972) relating hepatoma induction to DDT 
intake cannot be described in terms of a low-order polynomial with positive coefficients 
(see Fig. 6.16). Again, the mechanism of action of DDT as a carcinogen is not known; 
it may operate through modulations of enzyme systems. In order to determine whether 
unexpected behaviour of this type is occurring, plots of the risk against categorized 
levels of the exposure should be performed, to visualize the general shape of the 
dose-response curve, as stressed in Chapter 4. 

(b) Metameters of dose suggested by multistage models when dose levels vary 

For an exposure additional to background, which varies throughout life with 
intensity f (t), the additional contribution to the incidence rate at time T depends on 
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Fig. 6.16 Prevalence of liver neoplasms among male CF1 mice fed differing doses of 
DDT. From Day (1985) 

Proportion of DDT in the diet (pprn) 

the mode of action. In terms of .the Armitage-Doll model, if it affects only the first 
stage, it is given by 

[ ( T  - t)k-2f (t) dt; 

and if it affects only a late (penultimate) stage, it is given by 
rT 

J, tk-'f (t) dt. 

These two expressions clearly have different implications if one requires a simple 
summary measure of the excess exposure. In the first case, early exposure receives the 
heaviest weight, in the second case late exposure. The first expression (6.11) is in fact 
similar to (5.1), with a latency function w(t - u) taken as a power of degree k - 2. 
Peto, J. (1978) has proposed a weight function of this type for mesothelioma induction 
after asbestos exposure, with k = 4  to give a quadratic. As we noted above, the 
epidemiology of mesothelioma induction fits well the description of early-stage action. 

Functions other than a quadratic have been suggested to relate the incremental 
exposure to future incidence. The log-normal is one, with the rationale that cancers 
may have a 'latency period' which is log-normally distributed (Armenian & Lilienfeld, 
1974; Thomas, D.C., 1982). The choice of a log-normal distribution appears to be 
based on an analogy with latent periods for infectious disease rather than a 
consideration of the process of carcinogenesis. 

For late-stage agents, expression (6.12) above does not correspond to (5.1). Weight 
is given to recent exposure, since the late-stage agent acts on transitions that have 
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already occurred. The concept of latency needs modification and cannot be simply 
expressed as a function such as (5.1). 

For many agents, one might expect a mixture of early- and late-stage action (as seen 
for cigarette smoking). The appropriate weighting through the period of exposure 
would then be represented by a mixture of the two expressions above. In the absence 
of precise knowledge of the differential effects of the exposure on early and late stages, 
a rough approximation could be taken as constant weighting throughout the period, 
i.e., average dose rate, perhaps truncated some years before disease onset as in the 
analysis described earlier of the cohort of uranium miners. 

(c) Effects of measurement error 

The preceding discussion has assumed that exposure levels are measured without 
error. In many epidemiological situations, however, measurement error can be large. 
In cohort studies, one may be able to assume that the error distributions for cases and 
controls are the same, so that the unfortunate effects of differential misclassification are 
avoided. The effect of such errors on a single estimate of relative risk is to bias the 
estimate towards unity. The effect on dose-response curves, with categorized exposure 
data, is to decrease each point in the curve, so that the overall slope is lower. In 
addition, the curvature of the dose-response may be modified. The usual effect is to 
make the curve more concave downwards, or  less convex upwards; for example, if a 
power of dose were to be fitted, the observed power would be less than the real power. 
Such an effect may be at the origin of the concave dose-response curves seen with 
regard to smoking for cancer of the bladder and of the oesophagus (see Fig. 6.17). Not 
only are smoking histories themselves in error, but it is also unclear how the effective 
dose should be measured. The correlation may not be high between the number of 
cigarettes smoked per day and the effective tissue exposure. Families of dose-response 
curves that allow for concavity of this type, such as 

Relative risk = (1 + dose)k 

may therefore be appropriate. 
It should be noted that the effect of misclassification is not always to induce greater 

concavity in the dose-response curve; the effect depends on the distribution of the 
exposure variable in the population. If the distribution is positively skewed, the 
curvature may increase; for example, a linear dose-response curve may appear convex 
upwards, or the estimate of k in the expression (6.13) may be biased upwards. Some 
examples are given in Table 1.10. 

With the uncertainties surrounding the parametric form of dose-response curve that 
might be used, attempts have been made to develop nonparametric approaches to the 
estimation of a dose-response relationship. One method has been to assume nothing 
except that the relationship is monotone nondecreasing, and maximum likelihood can 
be used to estimate the best fitting nondecreasing curve. This approach has some 
appeal, its drawbacks being that monotonicity may not be a valid assumption, as in the 
leukaemia-radiation association, and that it does not provide a concise description of 
the data. This latter point will be particularly apposite when dose and time variables 
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Fig. Relative risk for oesophageal cancer as a function of tobacco consumption. 
From Volume 1, p. 221 

10 20 30 

Average tobacco consumption [g/day] 

have to be considered jointly. A further advantage of the parametric approach is that 
comparison between studies is facilitated. 

(d) Implications for the joint effect of several exposures 

With two agents, acting continuously, both of which affect some of the transition 
rates, one can make a simple extension of expression (6.10). If the ith transition is 
increased by pli and pzi by the first and second agents respectively, then the incidence 
at time t will be proportional to 

If the effect of both agents is confined to the same single transition, and if their 
effects on this transition are independent, then the excess incidence at time t is simply 
proportional to 

( ~ l i  + p2i)fk-l, 

the sum of the two separate effects. The joint action is additive. 
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If, on the contrary, the two agents affect different transitions, so that pZi is zero if pIi 
is non-zero, and vice versa, then the excess incidence will be proportional to the 
product of a term involving the pli and a term involving the pZi, of the form 

tk-l  n (ai + pli) n (ai + PZ~).  
i for which i for which 

The joint effect is then multiplicative. 
In all situations other than these two extremes, the joint effect will lie between the 

additive and multiplicative, provided that the transition rates are affected independ- 
ently. On many occasions, of course, the assumption of independence would be 
questionable: a particular genotype might respond only to a specific exposure, one 
exposure might modify the enzyme systems mediating the effect of the second 
exposure, and so on. The issues are discussed by Siemiatycki and Thomas (1981). In 
simple terms, however, multistage models do suggest that both additive and multiplica- 
tive joint action are plausible models to investigate, at least initially. 

6.6 Application to the analysis of the South Wales nickel refinery data 

A number of papers have appeared in the past few years in which an epidemiological 
study is analysed to provide an interpretation in terms of multistage models (Brown & 
Chu, 1983a; Decarli et al., 1985). We present here further analyses of the South Wales 
nickel workers study, extending those of Chapters 4 and 5. Interpretation of the results 
in terms. of a multistage process derives principally from the variation of risk with a 
number of time variables, including time since first exposure, age at first exposure, 
duration of exposure and time since last exposure. Lack of information on exposure 
levels makes it difficult to ascertain when exposure started or stopped. We shall take 
time of first employment as an approximation to time of first exposure. From Table 
4.24, it appears that little exposure to the agent of importance took place after 1925, 
which we shall take as the date at which exposure stopped. (This change corresponds 
to some of the process changes in the factory. In 1922, arsenical impurities were 
removed and respirator pads introduced, and in 1924 the calciners were altered to 
reduce dust emission. After 1932, the amount of copper in the raw material was 
reduced by about 90%, and the sulphur almost completely removed.) By the definition 
of the cohort, no one could have retired before 1925. All individuals thus have the 
same date of stopping exposure, and calendar time and time since last exposure are 
completely confounded. For this reason, the latter variable has not been considered as 
a separate risk-determining factor. 

As described in Chapter 4, a case-control approach within a cohort was adopted to 
identify high-risk areas within the factory. The results are shown in Table 6.7 (Kaldor 
et al., 1986), and the job categories classified as high risk are indicated. An exposure 
index based on years of employment in these job categories was constructed, as 
described in Chapter 4, and used as one of the four variables chosen for closer study, 
the other three being age at first employment, year of first employment, and time since 
first employment. 
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Table 6.7 Regression coefficients and standard errors (in parentheses) for duration in 
each job category, considering all categories simultaneouslya 

Category Lung cancer Nasal sinus cancer Lung and nasal 
sinus cancer 
combined 

Calcining I 
(general and furnace) 

Calcining II (crushing) 
Copper sulphate 
Reduction 
Nickel sulphate 
Furnaces 
Concentrates 
Gas, steam and power 

production 
General engineering 
General trades 
- - -~ - -  

a From Kaldor et al. (1986) 
Ratio of the parameter to its standard error exceeds 1.645, indicating significance at the 0.05 level (one-sided test). 

Two approaches were taken to describing the excess risk. One modelled the relative 
excess, giving parameters equivalent to SMRs, in terms of the expression 

A, = Ek . S M b  exp (PTzk), 

where A, is the expected number of deaths in cell k, E, is the expected number of 
deaths in cell k based on population rates, SMR, is the risk for the baseline category 
relative to the population rates (in this example given by the first level for each variable 
in Table 6.8), Zk is a vector of indicator variables giving the value of each of the four 
exposure-related variables, and P is the vector of unknown parameters to be estimated. 
The elements of P correspond to the relative risks, or SMRs, associated with different 
levels of the exposure variables. 

The second approach modelled the excess number of cases in each cell in terms of 
the number of person-years in that cell (P,), the baseline rate (Ro) for the cell chosen 
as the reference and terms describing the relative effect on the absolute excess of the 
different levels of the exposure variables. Algebraically, 

A, = Ek + Pk . Ro exp (PTzk). 

In model 1, expression (6.15), the components of P, when exponentiated, describe the 
relative effects of different exposure levels on the overall SMR for the cohort; in model 
2, expression (6.16), the exponentiated components of P describe the relative effects of 
different exposure levels on the overall absolute excess mortality rate for the cohort, 
the EMR. Table 6.8 gives the results of fitting these two models for both lung and nasal 
sinus cancer, giving the estimated EMRs and SMRs associated with all four variables. 
For both cancers, there is a steady increase in risk with increasing exposure index, the 
increase being sharper for nasal sinus cancer. The effect of year of first employment, 
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Table 6.8 Estimated adjusted SMRs and EMRs for lung and nasal sinus cancer 
mortalitya 

Variable Level Lung cancer Nasal sinus cancer 

S M R ~  E M R ~  S M R ~  E M R ~  

Age at first <20 
employment (years) 20-27.5 

27.5-35 
35+ 

Year of first <I910 
employment 1910-1914 

1915-1919 
1 920- 1 924 

Exposure index 0 
1-4 
5-9 
10-14 
15+ 

Time since first <20 . 
employment (years) 20-29 

30-39 
40-49 
50 + 

a From Kaldor et a/. (1986). Due to editing in progress, these analyses are based on a slightly modified 
version of the data given in Appendices VII and VIII. There are therefore some minor differences between 
this table and Table 4.25. 

Relative to the rate in the baseline category, which is arbitrarily fixed as 1.0 
Significantly different from the baseline at the 0.05 level of significance (two-tailed) 
Significantly different from the baseline at the 0.01 level of significance (two-tailed) 

given the exposure index, is slight for both cancers. For age at first employment and 
time since first employment, however, the estimates are strikingly different for the two 
cancers. 

The SMR for lung cancer varies little with age at first employment but decreases 
sharply with time since first employment -variables that can be considered as 
surrogates for age at first exposure and time since last exposure. The EMR, as a 
function of time since first employment, rises to a plateau then remains roughly 
constant. This behaviour of the SMR and the EMR corresponds well to that of a 
late-stage agent, as described in Table 6.6. There is some inconsistency with the 
behaviour of the EMR with age at first employment, which does not show the steady 
rise with age expected of a late-stage agent. The explanation may lie in changing 
underlying rates for lung cancer, since the relevant period is one in which the rate for 
lung cancer was increasingly rapidly. Those older at first employment would tend to 
have lower baseline rates. 

For nasal sinus cancer, the EMR rises rapidly with time since first employment; the 
SMR rises initially and then plateaus. This behaviour corresponds to that of an 
early-stage agent. Both the EMR and SMR, however, rise steadily, the former more 
rapidly, with age at first employment, behaviour directly contrary to that predicted for 
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an early-stage agent. This inconsistency may have arisen because age at first 
employment is still confounded with degree of exposure, even though an exposure 
index has been fitted in the model. In epidemiological data of this type, in which no 
concurrent measure of exposure is available, the retrospective construction of exposure 
indices may introduce problems of its own, and certainly cannot be guaranteed to 
summarize fully different exposures among individuals. 

This example demonstrates that one cannot expect epidemiological observation to 
conform closely to the constraints of simple models, due, for example, to the effect of 
other variables for which there is no information, or to the inadequacy of exposure 
information for the variable of interest. The purpose of introducing multistage concepts 
is not to describe completely the complexities actually observed, but to explain, in 
terms of a fairly simple model of the carcinogenic process, major differences in 
behaviour. 
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CHAPTER 7 

DESIGN CONSIDERATIONS 

7.1 Introduction 

In Chapter 1, we considered a range of questions concerned with the implementation 
of a cohort study. In this chapter, we concentrate on the more formal aspects of study 
design, in particular power, efficiency and study size. The design issues considered 
initially in this chapter are based, in large part, on the analytical methods of Chapters 2 
and 3, comprising simple comparisons of a group with an external standard, internal 
comparisons within a cohort, and tests for trend using the approach of 93.6. Power 
considerations based on the modelling approach of Chapters 4 and 5 are only touched 
on. 

The design of case-control studies is considered at some length. The motivation 
comes principally from the concept of risk-set sampling introduced in Chapter 5, but 
the results apply to general case-control studies. Topics discussed include the choice of 
matching criteria, the number of controls to select, and the effects that control of 
confounding or an interest in interaction will have on study size requirements. 
Attention is focused on the simple situation of one, or a small number, of dichotomous 
variables. 

Two approaches are taken to the evaluation of different study designs; the first is 
based on calculation of the power function, the second is based on the expected 
standard errors of the relevant parameters. The power considerations are based on 
one-sided tests of significance unless specifically stated to the contrary, since in most 
studies the direction of the main effect of interest is an inherent part of the specification 
of the problem under study. The discussion of the design of cohort studies assumes that 
external rates are known, even though the analysis may be based on internal 
comparison and does not use external rates. The reason is evident - that evaluation of 
the potential performance of a study before it is carried out must be based on 
information exterior to the study. Since in this chapter all expected numbers are based 
on external rates, we have dispensed with the notation used in earlier chapters, where 
expected numbers based on external rates are starred. 

It needs stressing strongly that power calculations are essentially approximate. The 
size, age composition and survival of the cohort will usually not be known with any 
great accuracy before the study is performed. In addition, calculations are generally 
based assuming a Poisson distribution for the observed events, since they derive from 
the statistical methods of Chapters 2 and 3. Many data may be affected by extra 
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Poisson variation, which will augment the imprecision in probability statements. 
Furthermore, the level of excess risk that one decides that it is important to detect is to 
some extent arbitrary. 

7.2 Sample size for cohort studies - comparison with an external standard 

This section considers the design of studies in which the total cohort experience is to 
be compared to an external standard. It is assumed that analyses are in terms of the 
SMR, with tests of significance and construction of confidence intervals following the 
methods of Chapter 2. 

The number of deaths, D, of the disease of interest (or number of cases if cancer 
registry material is available) is to be determined in the cohort, and compared with the 
number expected, E, based on rates for some external population, whether national or 
local. The relative risk is measured by the ratio DIE, the SMR. Tests of significance 
for departures of the SMR from its null value of unity and the construction of 
confidence intervals were discussed in 02.3. The capacity of a given study design to 
provide satisfactory inferences on the SMR can be judged in two ways: first, in terms of 
the capacity of the design to demonstrate that the SMR differs significantly from unity, 
when in fact it does, and, second, in terms of the width of the resulting confidence 
intervals, and the adequacy of the expected precision of estimation. 

The first approach proceeds as follows. For an observed number of deaths, D, to be 
significantly greater than the expected number, E, using a one-sided test at the 100a% 
level, it has to be greater than or equal to the a point of the Poisson distribution with 
mean E, a point that we shall denote by C(E, a). (For a two-sided test, a is replaced 
by a12.) Since the Poisson is a discrete distribution, the exact a point does not usually 
exist, and we take C(E, a )  to be the smallest integer such that the probability of an 
observation greater than or equal to C(E, a )  is less than or equal to a .  Table 7.1 gives 
the value of C(E, a )  for a = 0.05 and 0.01, and a range of values of E. If, however, 
the true value of the SMR is equal to R, then the observed number of deaths will 
follow a Poisson distribution with mean RE. The probability of a significant result is 
then the probability that D, following a Poisson distribution with mean RE, is greater 
than or equal to C(E, a). For given values of E and a ,  this probability depends on!] 
on R. It is simple if somewhat laborious to calculate and is known as the power 
function of the study. Common practice is to choose a value of R that one feels is the 
minimum that should not pass undetected, and to calculate the power for this value. 
Table 7.2 gives the power for a range of values of E and R, for a equal to 0.05 and 
0.01, respectively. The values in the column R = 1 are, of course, simply the 
probabilities of rejecting the null hypothesis when in fact it is true, and so give the real 
significance of the test, rather than the nominal 5% or 1%; one can see in Table 7.2a 
that they are all less than 5%, and in Table 7.2b all less than 1%. 

Example 7.1 
Suppose that with a given study cohort and the applicable mortality rates, there is an expected number of 

20 deaths. Then, all observed values greater than or equal to 29 will be significant at the 5% level, and all 
values greater than or equal to 32 will be significant at the 1% level (Table 7.1). These are the values 
C(20, 0.05) and C(20, 0.01), respectively. If the true value of the relative risk is 1.5, then the true expected 
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Table 7.1 5% and 1% points of the Poisson distribution for different 
values of the mean. The numbers tabulated are the smallest integers for 
which the probability of being equalled or exceeded is less than 5% and 
1 % (designated C( E, 0.05) and C( E, 0.01 )), respectively. 

Mean of Poisson C(E, 0.05) C(E, 0.01) Mean ( E )  C(E, 0.05) C(E, 0.01) 
distribution, E 

Table 7.2 Comparison with an external standard 

(a) Probability ( % I  of obtaining a result significant at the 0.05 level (one-sided) for 
varying values of the expected value E assuming no excess risk, and of the true relative 
risk R 

Expected number True relative risk ( R )  
of cases assuming 
no excess risk 1 .O 1.5 2.0 3.0 4.0 5.0 7.5 10.0 15.0 20.0 
( R = l )  
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Table 7.2 (contd) 

Expected number True relative risk ( R )  
of cases assuming 
no excess risk 1 .O 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
( R = l )  

(b) Probability (%) of obtaining a result significant at the 0.01 level (one-sided) for 
varying values of the expected value E assuming no excess risk, and of the true relative 
risk R 

Expected number True relative risk ( R )  
of cases assuming 
no excess risk 1 .O 1.5 2.0 3.0 4.0 5.0 7.5 10.0 15.0 20.0 
( R = l )  
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Table 7.2 (contd) 

Expected number True relative risk ( R )  
of cases assuming 
no excess risk 1 .O 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
( R = l )  

value will be 20 x 1.5 = 30. The probability that an observation from a Poisson distribution with mean 30 is 
greater than or equal to 29 is 60% (Table 7.2) and that it is greater than or equal to 32 is 38% (Table 7.2). 
There is thus 60940 power of obtaining a result significant at the 5% level, and 38% power of obtaining a 
result significant at the 1% level, if the true relative risk is 1.5. 

An alternative way of expressing the power of a study is to give the relative risk for 
which the power is equal to a certain quantity, such as 80% or 95%. Table 7.3 gives the 
relative risks for a range of values of E and of the power, for 0.05 and 0.01 levels of 
significance, respectively. 

Example 7.1 (contd) 
To continue the previous example, with E equal to 20, using a 5% significance test, 50% power is obtained 

if the relative risk is 1.43, 80% power if R is 1.67 and 95% power if R is 1.92. The corresponding figures for 
1% significance are relative risks of 1.58, 1.83 and 2.09. 

The values given in Tables 7.2 and 7.3 are based on exact Poisson probabilities. To 
calculate power values for other values of E and R, one can use one of the 
approximations to the Poisson distribution suggested in Chapter 2. For example, one 
can use expression (2.12), the square root transformation, from which the quantity 

is approximately a standard normal deviate. If 2, is the a point of the normal 
distribution, then for D to be significant at the 5% level (one-sided as before) we must 
have 

This value corresponds to the value C(E, a )  of the discussion in the previous pages. 
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Table 7.3 Comparison with an external standard 

(a) True value of the relative risk required to have given 
power of achieving a result significant at the 5% level 
(one-sided), for varying values of the expected value E 
assuming no excess risk (R = 1) 

Expected cases Probability of declaring significant (pc0.05) difference 
( R =  1) 

0.50 0.80 0.90 0.95 0.99 

1 .O 3.67 5.52 6.68 7.75 10.05 
2.0 2.84 3.95 4.64 5.26 6.55 
3.0 2.22 3.03 3.51 3.95 4.86 
4.0 2.1 7 2.84 3.25 3.61 4.35 
5.0 1.93 2.50 2.84 3.14 3.76 
6.0 1.78 2.28 2.57 2.83 3.36 
7.0 1.81 2.27 2.54 2.78 3.26 
8.0 1.71 2.13 2.37 2.58 3.02 
9.0 1.63 2.01 2.24 2.43 2.83 

10.0 1.57 1.92 2.13 2.31 2.67 
11.0 1.61 1.95 2.15 2.32 2.66 
12.0 1.56 1.88 2.06 2.22 2.55 
13.0 1.51 1.82 1.99 2.14 2.45 
14.0 1.48 1.77 1.93 2.08 2.36 
15.0 1.51 1.79 1.95 2.09 2.37 
20.0 1.43 1.67 1.80 1.92 2.1 5 
25.0 1.35 1.55 1.67 1.77 1.96 
30.0 1.32 1.51 1.61 1.70 1.87 
35.0 1.30 1.47 1.57 1.65 1.81 
40.0 1.29 1.45 1.54 1.61 1.76 
45.0 1.26 1.41 1.49 1.55 1.69 . 

50.0 1.25 1.39 1.47 1.53 1.66 
60.0 1.23 1.35 1.42 1.48 1.59 
70.0 1.21 1.32 1.39 1.44 1.54 
80.0 1.20 1.30 1.36 1.41 1.50 
90.0 1.19 1.28 1.34 1.38 1.47 

100.0 1.18 1.27 1.32 1.36 1.45 

(b) True value of the relative risk required to have given 
power of achieving a result significant at the 1% level 
(one-sided), for varying values of the expected value E 
assuming no excess risk (R = 3 ) 

- 

Expected cases Probability of declaring significant ( p c  0.01) difference 
( R  = 1) 

0.50 0.80 0.90 0.95 0.99 
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Expected cases Probability of declaring significant ( p  G 0.01) difference 
( /=?=I)  

0.50 0.80 0.90 0.95 0.99 

When rounded up to the next integer value, one obtains exactly the same result as in 
Table 7.1 on almost every occasion. 

If the true value of the relative risk is R,  then the observation D will have a 
distribution such that 

is a standard normal distribution. To achieve significance at the a level, we must have 

D 2 { E  ' I 2  + (Z,)/2}2, 

which will occur with probability /3 when 

(RE)'n - (E)'" = (Z,  + Z1-p)/2, 

where Zi-p is the (1 - /3) point of the standard normal distribution. In other words, to 
have probability /3 of obtaining a result significant at the a level when the true relative 
risk is R,  one needs a value of E equal to or greater than 

As can be simply verified, use of this expression gives values close to those shown in 
Tables 7.2 and 7.3. For example, with a = 1 - /3 = 0.05, for which Z, = Z1+ = 1.645, a 
value of R equal to 2.31 requires a value of E equal to 10.01 from expression (7.1), and 
a value of 10.0 from Table 7.3. Use of expression (2.11) based on the cube root 
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transformation will give slightly improved accuracy for small values of E - say, less 
than 10 -whereas use of expression (2.10), the usual x2 statistic, will give somewhat 
less accurate results. Only for very small studies in which large relative risks are 
expected would- the accuracy of the simple expression (7.1) be inadequate. 

The other approach to assessing the capacity of a given study design to respond to 
the questions for which answers are sought is in terms of the expected widths of the 
resulting confidence intervals. These widths are given, in proportional terms, in Table 
2.11. Given an expected number E based on external rates and a postulated value R 
for the relative risk, one can read off, from Table 2.11, the lower and upper multipliers 
one would expect to apply to the observed SMR to construct a confidence interval. 

Thus, for E = 20 and for different values of R, we have the following 95% 
confidence intervals for R if D takes its expected value of RE: 

Lower bound Upper bound 

The investigator would have to decide whether confidence intervals of this expected 
width satisfy the objectives of the study, or whether attempts would be needed to 
augment the size of the study. 

For values of E and R not covered in Table 2.11, we can use as before the square 
root transformation (see expression 2.15). For a given value of E and R, the square 
root of the observed number of deaths, D'", will be approximately normally 
distributed, with mean (ER)'" and variance 114. The resulting 100(1- a)% confidence 
intervals if D took its expected value would thus be given by 

The upper limit is improved by incorporating the modification of (2.15), replacing R by 
R(D + 1)lD. 

7.3 Sample size for cohort studies - comparison with an internal control group 

In this section, we outline power and sample size determination when it is envisaged 
that the main comparisons of interest will be among subgroups of the study cohort, 
using the analytical methods of Chapter 3. We start by considering the simplest 
situation, in which the comparison of interest is between two subgroups of the study 
cohort, one considered to be exposed, the other nonexposed. Rates for the disease of 
interest are to be compared between the two groups. The situation corresponds to that 
of 93.4, with two dose levels. As argued in the preceding chapters, use of an internal 



280 BRESLOW AND DAY 

control group is often important in order to reduce bias. Suppose that the two groups 
are of equal size and age structure, and that we observe 0, events in one group (the 
exposed) and 0, in the other. Since the age structures are the same, age is not a 
confounder, and no stratification is necessary. Following $3.4, inferences on the 
relative risk R are based on the binomial parameter of a trial in which 0, successes 
have occurred from 0, + 0, observations, the binomial parameter, n say, and R being 
related by 

as in expression (3.6). 
Now if R is equal to unity, n is equal to 112, and the test of significance can be based 

on the tail probabilities of the exact binomial distribution given by 

where 0, = 0, + 0,. For a fixed value of 0 + ,  the power of the study can be evaluated 
for different values of R, using the binomial distribution with parameter R/(R + 1). 
0 + ,  however, is not fixed, but a random variable following a Poisson distribution with 
mean E(1+ R), where E is the expected number of events in the nonexposed group. 
The power for each possible value of 0, needs to be calculated, and the weighted sum 
computed, using as weights the corresponding Poisson probabilities. This weighted sum 
gives the unconditional power. 

When the groups are of unequal size, but have the same age structure, a similar 
approach can be adopted. Suppose that E, events are expected in the exposed group 
under the null hypothesis, and that E, events are expected in the control group. Then, 
under the null hypothesis, the number of events in the exposed group, given 0, the 
total number of events, will follow a binomial distribution with probability parameter 
E,/(E, + E,). Under the alternative hypothesis with relative risk R, the binomial 
distribution will have parameter RE,I(RE, + E,). The power can be evaluated for each 
value of 0 + ,  and the weighted sum computed using as weights the probabilities of the 
Poisson distribution with mean RE1 + E,. Gail (1974) has published power calculations 
when El equals E2, and Brown and Green (1982) the corresponding values when El is 
not equal to E,. Table 7.4 gives the expected number of events in the control group, 
E,, for power of 80% and 90% and significance (one-sided) of 5% and 1% for various 
values of R and of the ratio E2/El (written as k). 

On many occasions, particularly when O1 and 0, are large, the formal statistical test 
is unlikely to be based on the binomial probabilities, but on a normal approximation 
using either a corrected or uncorrected x2 test. 

In the case of equal-sized exposed and control cohorts, the observed proportion 
p = Ol/(O1 + 0,) is compared with the proportion under the null hypothesis, namely 
112, using as variance, that under the null. The uncorrected x2 test statistic is equivalent 
to comparing 

with a standard normal distribution. 
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Table 7.4. Comparison with an internal control group 

(a) Expected number of cases in the control group required to detect a 
difference with 5% significance and given power, for given relative risk, 
when the control group is k times the size of the exposed group (using 
exact Poisson distribution) 

ka Relative riskb 

2 3 4 5 6 8 10 20 

1/10 11.3 3.86 2.16 1.47 1.10 0.712 0.528 0.212 
15.0 5.00 2.75 1.84 1.36 0.881 0.639 0.262 

115 12.3 4.23 2.37 1.60 1.18 0.770 0.566 0.236 
16.2 5.45 3.03 2.03 1.50 0.958 0.696 0.283 

112 15.1 5.18 2.85 1.93 1.45 0.954 0.706 0.299 
20.2 6.80 3.74 2.48 1.83 1.19 0.873 0.363 

1 20.0 6.70 3.71 2.52 1.89 1.25 0.923 0.392 
27.0 8.89 4.90 3.27 2.43 1.58 1.17 0.485 

2 29.6 9.91 5.40 3.58 2.59 1.63 1.19 0.498 
40.3 13.5 7.26 4.82 3.54 2.22 1.59 0.642 

5 58.6 19.5 10.8 7.21 5.21 3.33 2.44 1.00 
80.1 26.3 14.5 9.76 7.19 4.50 3.25 1.33 

10 107 35.0 19.5 13.0 9.52 6.00 4.29 1.67 
146 48.2 26.5 17.7 13.0 8.27 5.93 2.31 

(b) Expected number of cases in the control group required to 
detect a difference with 1% significance and given power, for 
given relative risk, when the control group is ktimes the size of the 
exposed group (using exact Poisson distribution) 

ka Relative riskb 

1/10 17.9 6.06 3.38 2.26 1.69 1.10 0.805 0.336 
22.5 7.51 4.12 2.76 2.03 1.30 0.952 0.387 

115 19.4 6.55 3.63 2.44 1.82 1.19 0.864 0.275 
24.5 8.15 4.47 2.97 2.20 1.42 1.03 0.416 

112 23.9 8.03 4.46 2.96 2.19 1.41 1.03 0.431 
30.3 10.0 5.57 3.69 2.70 1.73 1.25 0.508 

1 31.2 10.5 5.73 3.82 2.85 1.87 1.38 0.567 
39.8 13.2 7.27 4.79 3.52 2.28 1.68 0.689 

2 46.1 15.1 8.33 5.42 3.91 2.49 1.82 0.775 
59.2 19.4 10.6 7.02 5.08 3.17 2.29 0.946 

5 90.5 29.2 15.9 10.6 7.76 4.80 3.41 1.38 
116 37.9 20.5 13.6 10.0 6.32 4.47 1.75 

10 164 52.8 28.5 18.6 13.5 8.50 6.07 2.41 
213 69.0 37.3 24.3 17.7 11.2 7.98 3.15 

Ratio of E,IE,, where E2 is the number of events expected in the control group and E, 
the number expected in the exposed group under the null hypothesis 

bThe top number corresponds to a power of 80% and the bottom to a power of 90% 
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Under the alternative of a relative increase in risk of R, p has mean R / ( R  + 1) and 
variance R/{Q+(R + I ) ~ ) .  The required sample size is then given by 

0+ = 
($2, + ~ l - ,  (2-J - ( ( R  + 1)Z. + 2 ~ ~ - p f l ) ~  

- 
( R  - 1)2 (A-3 

When R is close to unity, approximate solutions are given by approximating 
R / ( R  + 1)2 by 114 and rewriting the equation 

When the two groups are of unequal size, nl and n2, say, but the same age 
distribution, then we have 

Following Casagrande et al. (1978b) and Ury and Fleiss (1980), more accurate values 
are given by incorporating Yates' correction in the X 2  significance test, which for 
groups of equal size results in multiplying the right-hand side of (7.3) by the term 

where 
f l  R 

A= $Z,+ ( ( R + l )  
p2 = ;. 

When the groups are of unequal size, n1 and n,, respectively, the corresponding 
correction factor is given by 

where 

Table 7.5 gives the number of cases that would need to be expected in the 
nonexposed group for a range of values of the relative risk R, of the relative sizes of 
the exposed and unexposed group, and of a and /3. The numbers are based on 
expression (7.3), modified by incorporating Yates7 correction. The values in Table 7.5 
are very close to the corresponding values based on exact binomial probabilities given 
in Table 1 of Brown and Green (1982). They are slightly smaller than the values in 
Table 7.4 for the more extreme values of R and of the ratio of the sizes of the two 
groups; the values in Table 7.4 took account of the Poisson variability of 0,. 
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Table 7.5 Sample size requirements in cohort studies when the ex- 
posed group is to be compared with a control group of k times the size. 
The numbers in the table are those expected in the control group (using 
X 2  approximation) 

k Relative risk 

Significance, 5% 
Power, 50% 

Significance, 5% 
Power, 80% 

Significance, 5% 
Power, 90% 

Significance, 5% 
Power, 95% 

Significance, 7 %  
Power, 50% 
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k Relative risk 

Significance, 1% 1 .OO 
Power, 80% 2.00 

4.00 
1 0.00 

100.00 
0.50 
0.25 
0.1 0 

Significance, 1% 1 .OO 
Power, 90% 2.00 

4.00 
10.00 

100.00 
0.50 
0.25 
0.1 0 

Significance, 1% 1 .OO 
Power, 95% 2.00 

4.00 
10.00 

100.00 
0.50 
0.25 
0.1 0 

Comparison of Table 7.5 with Table 7.2 indicates that, for given a, t., and R, roughly 
twice as many cases must be expected in the nonexposed control group when an 
internal comparison group of equal size is used. Since there are two groups, this 
implies that roughly four times as many individuals must be followed. This increase 
represents the price to be paid for using internal rather than external comparisons. 

Since power calculations are essentially approximate, an alternative and simple 
approach is obtained by using the variance stabilizing arcsin transformation, given by 

This transformed variable is approximately normally distributed with variance equal to 
1/{4(01 + 02)). The mean if the two groups are of equal size is given by 
arcsin{R /(R + 1)) I". 

Under the null hypothesis, R equals unity, so that a result significant at the a level is 
obtained if 

If the relative risk among the exposed is equal to R, then this inequality will hold with 
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probability at least P if 

whre Zldp is the (1 - p)  point of the normal distribution. 
This expression gives the total number of events expected in the two groups 

combined that are required to have probability /3 of achieving a result significant at the 
cu level if the true relative risk is R. An approximation closer to the equivalent X2 test 
with the continuity correction is given if one adds a correction term to the arcsin 
transformation, replacing, for a binomial with proportion p and denominator n, 
a r c ~ i n @ ) ~ I ~  by arcsin@ - $n)ln. In the present context n is given by O1 + 02 ,  so that 
(7.5) would no longer give an explicit expression for E, but would require an iterative 
solution. Usually one iteration would suffice. 

If the exposed and nonexposed groups are not of equal size, but the age distributions 
are the same, then a minor modification can be made to the above inequality. The 
binomial parameter, previously R I(R + I), now becomes Rnl/(Rnl + n,), where n1 
and n2 are the numbers of individuals in the two groups. Expression (7.2) then 
becomes 

When the age structures of the two groups are dissimilar, one could use the approach 
of 03.4 or 63.5, and replace nl and n, in expressions (7.3), (7.4) and (7.5) by El  and 
E,, the expected number of cases in the two groups based on an external standard or 
on the pooled rates for the two groups. If the confounding due to age is at all severe, 
however, this procedure will suffer from appreciable bias, and one should use the 
preferred methods of 63.6, basing power considerations on the variance of the 
Mantel-Haenszel estimate of relative risk (expression 3.17) (Muiioz, 1985). The effect 
of confounding on sample size requirements is discussed in more detail in 67.7. 

If more emphasis is to be put on the precision of estimates of relative risk, rather 
than on detection of an effect, then the width of expected confidence intervals is of 
more relevance. The equations given by (3.19) can be solved to give upper and lower 
limits, or alternatively one can use the simpler expression (3.18). 

7.4 Tests for trend 

The results of a cohort study will be more persuasive of a genuine effect of exposure 
on risk if one can demonstrate, in addition to a difference between an exposed and an 
unexposed group, a smoothly changing risk with changing exposure. It is thus 
important that the study be designed with this aim in view. Under favourable 
circumstances, one will have not just two groups - one exposed and one nonexposed - 
but a number of groups, each with different exposures. In the analysis of the results of 
such a study, the single most powerful test for an effect of exposure on risk will 
normally be a trend test. It will therefore be useful, when assessing the value of a given 
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study design, to examine the power of a trend test. For the sake of simplicity, we 
consider the situation in which we have K exposure groups but no further stratification 
by age or other confounding variables. Using the notation of Chapter 3, we shall 
investigate the power of the test statistic (3.12), given by 

where the Ek are expectations based on external rates, but normalized so that 

For a one-sided test of size a for positive slope, and writing the denominator in the 
above expression as V, we need 

to achieve significance. 
V is given by 

and so, being a multiple of C Ok, will have a Poisson distribution, multiplied by a scale 
factor involving the xk and Ek. v"' will then be approximately normal, with standard 
deviation given by 112 times the scale factor 

If Ek are the expectations based on external rates, then the left-hand side of 
expression (7.6) can be written as 

In order to assess the probability that the inequality (7.6) will hold, we have to 
specify a range of distributions for the 0, alternative to the null distribution that 
E(Ok) = Ek for all k. 

A simple family of alternatives representing a linear trend in risk is given by 

E(Ok) = (1 + fi~k)Ek, 

from which we have 

( ";El) Expectation (Ek) = Ek 1 + 

The power is then given by the probability that the following inequality holds: 
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Writing 

v = w c ok, 

where W is a function of the xk and Ek, then under the family of alternative 
distributions given above, the left-hand side will have mean rn approximated by 

and variance s2 by 

The power is then approximately the probability corresponding to the normal deviate 
Z1+ given by rn = s . Z1+. 

An alternative approach to the power of tests for linear trend was given by Chapman 
and Nam (1968) based on the noncentral x2 distribution. 

Example 7.2 
We consider a hypothetical example, comparing power considerations based on a trend test with those 

based on two alternative dichotomizations of the data. Let us suppose that we have four exposure levels, 0, 
1, 2, 3, and that the groups at each level are of the same size and age structure. Under the null hypothesis, 
they therefore have the same expected numbers of events, E, say, in each group. 

We consider a family of alternative hypotheses in which the relative risk is given as above by 

where xk takes the values 0, 1,  2, 3. Substituting into the expression for m and s2 gives 

an equation that can be solved for P given S and E or, conversely, solved for E given 6 and P. 
It is interesting to compare the results of power calculations for the trend test to the results one would 

obtain by dichotomizing the data, grouping, for example, the two highest and the two lowest exposed 
groups. We would then have a relative risk between the two groups of 

and each of the two groups would be twice the size of the original four groups. 
Substituting these values in expression (7.5) gives 

2 + 5 6  2 + 5 6  2 
2E(1+ -) = (Z, + ~ ~ - ~ ) ~ / 4 { a r c s i n ( ~ )  - arcsin(?)ln] 

(the 2 at the start of the left-hand side arises since we have the sum of two groups each of size E),  again an 
equation that can be solved for either E or for B. 

Alternatively, one could base power calculations on a comparison between the two groups with highest 
and lowest exposure, respectively, the risk of the former relative to the latter being 1 + 3S. 
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The three approaches give the following result for the expected number E required in each group, using a 
test with a = 0.05 and P = 0.95: 

Trend test Dichotomy into two Highest against 
6 equal groups lowest 

The trend test is considerably more powerful in this example than the test obtained by dichotomizing the 
study cohort, and marginally more powerful than the simple test of highest against lowest. 

7.5 Restriction of power considerations to the follow-up period of interest 

The discussion so far has treated observed and expected deaths as if all periods of 
follow-up were of equal interest. Usually, however, one would expect any excess risk 
to be concentrated in particular periods of follow-up, as outlined in Chapter 6. The 
carcinogenic effect of many exposures is not seen for ten years or more since the start 
of exposure. One is clearly going to overestimate the power of a study if one groups 
together all person-years of follow-up. An example comes from a study of the later 
cancer experience among women diagnosed with cancer of the cervix (Day & Boice, 
1983). The purpose of the study was to investigate the occurrence of second cancers 
induced by radiotherapy given for the cervical cancer. For this purpose, three cohorts 
were assembled: women with invasive cancer of the cervix treated by radiotherapy, 
women with invasive cancer of the cervix not treated by radiotherapy, and women with 
in-situ carcinoma of the cervix not treated by radiotherapy. Table 7.6 gives the 
woman-years in different follow-up periods for the three groups, and the expected 
numbers of cancers in the first group, excluding the first year, and excluding the first 
ten years of follow-up. One can see that in the in-situ group 90% of the person-years of 
follow-up occurred in the first ten years, with a corresponding figure of over 70% for 
the women with invasive cancer. This example is extreme in the sense that cohort 
membership for the invasive cases is defined in terms of a life-shortening condition, 

Table 7.6a Woman-years at risk by time since entry into 
the cohort (i.e., diagnosis of cervical cancer) 

- 

Time since lnvasive cancer In-situ cancer 
diagnosis 
(years) Treated by Not treated by 

radiotherapy radiotherapy 

Total 625 438 121 625 540 91 2 
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Table 7.6b Expected number of second cancers at selected 
sites among the radiation-treated group 

Excluding the first Excluding the first ten 
year of follow-up years of follow-up 

Stomach 210.4 86.1 
Rectum 1 57.4 68.6 
Breast 804.4 304.6 
Multiple myeloma 33.9 14.8 

and large-scale identification of in-situ cases by mass screening did not occur until the 
mid-1960s or later in many of the participating areas. For most of the cancers of 
interest, excesses were not seen until at least ten years after entry, so that power 
considerations based on the full follow-up period would seriously overestimate the 
potential of the study, especially in assessing the value of the in-situ cohort as a 
comparison group. 

7.6 Case-control sampling within a cohort 

( a )  Basic considerations of case-control design: dichotomous exposure - unmatched 
design 

Before discussing the specific issues of concern when sampling from a risk set in the 
context of $5.4, we review more generally design aspects of case-control studies. We 
begin with the simplest situation, of a single dichotomous exposure variable. The 
problem is that of comparing two independent binomial distributions, one correspond- 
ing to the cases, one to the control population, with binomial probabilities, respec- 
tively, of p ,  and p2, say. 

The approach to the comparison of two proportions that we have taken in these two 
volumes has been based on the exact conditional distribution of a 2 x 2 table, 
expressed in terms of the odds ratio. Tests of the null hypothesis were derived either 
from this exact distribution, or from the approximation to it given by the x2 test with 
continuity correction. Since sample size and' power calculations should refer to the 
statistical test that is going to be used, most of the subsequent discussions of power 
refer to the exact test, or approximations to it. 

When the samples of cases and controls are of the same size, n, say, then for a x2 
test without the continuity correction the power and sample sizes are related by the 
equation 

n = ( z a m  + ~ l - p V ~ l q l +  ~ 2 q 2 ) ~ / @ 1 -  p d 2 ,  (7- 7 )  

where ac is the size of the test, /3 the power, p ,  the proportion exposed among the cases 
and p2 the proportion exposed among the controls (and with qi = 1 -p i ,  i = 1, 2 and 
p = 1 - q = (pl  +p2) /2 . )  

Incorporating the continuity correction into the X 2  test, to make it approach the 
exact test more closely, results in multiplying the right-hand side of (7.7) by the factor 
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(Casagrande et al., 1978b) 

+ dl +4(pi - p2)lAI2, 
where 

A = ( z m ~ + z l - B ~ p l q 1 + ~ 2 q 2 ) ~ -  

From this expression, one can either calculate the power p from a given sample size, 
or the sample size n required to achieve a given power. 

This result has been extended by Fleiss et al. (1980) to the situation of unequal 
sample sizes. If we have a sample of size n from the population of cases (with 
parameter pl) and size nk from the controls (0 < k <a), then to have probability /3 of 
achieving significance at the a level, we need 

where 

and 

P = 1 - 4  = ( p l  + kp2)l(l + k). 

In any particular study, sample size considerations would normally be based on an 
estimate of p2, the prevalence of the exposure in the general population, and a value R 
for the relative risk that the investigator feels it would be important not to miss. In 
terms of the previous discussion, we would then have 

or P I =  Rp2/(1 - P2 + Rp2). 
Table 7.7 gives the required number of cases for a range of values of R, p2, a, P and 

k, the ratio of the number of controls to the number of cases, for the x2 test with 
continuity correction. The values are close to those obtained using the exact 
conditional test (Casagrande et al., 1978a). 

An alternative, simple approximation is obtained using the variance stabilizing arcsin 
transformation, with which the sample size needed from each of the two populations to 
achieve one-sided significance at the a level with probability P is given by 

112 2 n = (Z,  + Zl-B)2/2(arcsin p :I2 - arcsin p2 ) . 
If there are nk controls and n cases, this expression becomes 

112 2 n = (k + 1)(Z, + ~ , - ~ ) ~ / 4 k ( a r c s i n  in - arcsin p2 ) . (7.8) 

Consideration has recently been given to exact unconditional tests for equality of two 
proportions (Suissa & Shuster, 1985), approximations to which would be given by the 
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Table 7.7 Unmatched case-control studies. Number of cases required in an unmatched case- 
control study for different values of the relative risk, proportion of exposed among controls, 
significance level, power and number of controls per case. The three numbers in each cell refer to 
case-control ratios of 1 : 1, 1 : 2 and 1 : 4. 

( a )  Significance = 0.05; power = 0.80 

Relative Proportion exposed in control group 
risk 

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 

( b )  Significance = 0.05; power = 0.95 

Relative Proportion exposed in control group 
risk 

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 
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Table 7.7 (contd) 

(b) Significance = 0.05; power = 0.95 

Relative Proportion exposed in control group 
risk 

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 

( c )  Significance = 0.07; power = 0.80 

Risk Proportion exposed in control group 
ratio 

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 

1.5 10583 2245 121 1 873 711 620 565 515 515 559 664 906 
7698 1638 887 642 524 458 419 385 387 422 505 693 
6247 1332 724 525 430 377 346 319 323 354 425 585 

2.0 3266 703 386 283 234 207 192 181 186 207 253 354 
2328 504 278 206 171 153 142 135 140 158 194 274 
1851 403 224 166 139 125 117 112 117 133 165 234 

2.5 1728 377 210 156 131 118 110 106 112 128 159 226 
1214 267 150 113 95 86 82 80 85 98 123 177 
950 210 119 90 77 70 67 66 71 82 104 151 

3.0 1128 249 140 106 90 82 78 76 82 95 119 173 
784 175 100 76 65 60 57 57 62 73 93 136 
606 136 79 61 52 48 47 47 52 61 79 116 

4.0 641 144 84 64 56 52 50 51 56 66 85 126 
439 100 59 46 40 38 37 38 43 51 67 100 
333 77 46 36 32 31 30 31 36 43 57 86 



Table7.7 (contd) 

( c )  Significance = 0.01; power = 0.80 

Risk Proportion exposed in control group 
ratio 

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 

( d )  Significance = 0.0 1; power = 0.95 

Risk 
ratio 

Proportion exposed in control group 

0.01 0.05 0.10 0.15 

16402 3478 1875 1352 
12155 2580 1393 1006 
10016 2128 1151 832 
5018 1078 591 433 
3686 794 437 321 
3007 649 358 264 
2639 574 319 237 
1926 420 235 175 
1557 341 191 143 
1715 377 212 160 
1245 275 156 118 
1000 222 126 96 
968 217 125 95 
698 157 91 70 
554 126 73 57 
662 151 88 69 
474 109 64 51 
373 86 5 1 41 
362 86 52 43 
258 62 38 31 
200 48 30 25 
248 61 38 32 
176 44 28 24 
136 34 22 19 
153 40 27 23 
108 29 19 17 
82 22 15 13 

11 1 3 1 21 19 
79 22 16 14 
60 17 12 11 
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X2 test without continuity correction. Sample sizes for the latter can be calculated 
directly from expression (7.7). 

A comparison of the sample size requirements, for 80% power and a test at the 0.05 
level, is given in Table 7.8, for the exact conditional test, the exact unconditional test, 
the x2 test with and without correction, and for the arcsin approximation. It is 
noteworthy that in each case the exact unconditional test is more powerful than the 
exact conditional test. At present, however, the advantages of working within a unified 
structure of inference based on Cox regression methods and conditional likelihood, of 
which the conditional exact test is an example, more than outweigh this slight loss of 
power. 

( 6 )  Basic considerations of case-control design: dichotomous exposure - matched 
design 

In matched designs, two problems have to be faced: how many controls to choose 
per case, and how many case-control sets to include, given the number of controls per 
case. We consider the second question first. 

For the sake of simplicity, we shall assume that each case is matched to the same 
number of controls, k, say. The method of analysis is described in Chapter 5 of 
Volume 1. When k = 1, a matched-pairs design, the analysis concentrates on the 
discordant pairs. Suppose we have T discordant pairs, among O1 of which the case is 
exposed. If risk for disease is unaffected by exposure, then O1 is binomially distributed 
with proportion 112. If exposure increases the relative risk by R, then 0, is binomially 
distributed with proportion R/(R + 1). The situation is discussed in 07.3, and similar 
power considerations apply. 

Expression (7.2), with the continuity correction factor and with n1 = n2, gives the 
number of discordant case-control pairs that will be required to detect a relative risk of 
R with probability /3 at significance level a!. Table 7.5, based on expression (7.2) and in 
the context of a cohort study, gives the expected number of cases required in the 
nonexposed group. To obtain the expected number of discordant case-control pairs 
required in a 1 : 1 matched case-control study, which corresponds to the total number of 
cases in the exposed and nonexposed groups combined in the context of Table 7.5, the 
quantities in the part of Table 7.5 referring to equal numbers in the exposed and 
nonexposed groups must be multiplied by (1 + R). 

The total number of case-control pairs that is required must be evaluated. If, as in 
the previous section, the probability of exposure is pl among the cases and p2 among 
the controls, then the probability of a pair being discordant is simply 

In a situation in which a matched design is thought appropriate, the probability of 
exposure would vary among pairs. The above expression then, strictly speaking, 
requires integration over the distribution of exposure probabilities. For the approxi- 
mate purposes of sample size determination, however, it would usually be sufficient to 
use the average exposure probabilities, p1 and p2. The number of matched pairs, M, 
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Table 7.8 Comparison of minimum sample 
sizes to have 80% power of achieving 5% 
significance for comparing two independent 
binomial proportionsa, for five different test 
proceduresb 

a From Suisa and Shuster (1985) 
ne = Fisher's exact test; nr = corrected chi-squared ap- 

proximation; np = uncorrected chi-squared approximation; 
nas = arcsin formula; n* = unconditional exact test; h = 
proportion exposed in control group; pl = proportion ex- 
posed among cases 
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Table 7.8 (contd) 

required is then given by 

where T is the number of discordant pairs. Table 7.9 with M = 1 indicates the number 
of matched pairs required for different values of R, p,, a and P. 

For studies involving 1 : M matching, the approach is similar, if more complicated. 
We use the data layout and notation of 95.14, Volume 1, as below: 

Number of controls positive 
0 1 . . . M 

Positive 
Cases n1,o n1,1 n1,2 n1, M 

Negative noT0 no, 1 120,2 M 

and we write = nl , i - l  + no,i. 

The usual test of the null hypothesis without the continuity correction is 

which, for significance at level a, we can write in the form 

Under the alternative hypothesis of a non-null relative risk R, we have (see 95.3, 
Volume 1) 



DESIGN CONSIDERATIONS 297 

Table 7.9 Matched case-control studies. Number of case-control sets in a matched 
case-control study required to achieve given power at the given level of significance, for 
different values of the relative risk and different matching ratios 

Ma Relative risk 

Proportion exposed = 0.1; significance = 5%; power = 80% 

Proportion exposed = 0.1; significance = 5%; power = 95% 

Proportion exposed = 0.7; significance = 7%; power = 80% 

Proportion exposed = 0.7; significance = 7%; power = 95% 

Proportion exposed = 0.3; significance = 5%; power = 80% 

Proportion exposed = 0.3; significance = 5%; power = 95% 

a M = number of controls oer case 
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Table 7.9 (contd) 

M Relative risk 

Proportion exposed = 0.3; significance = 1%; power = 80% 

Proportion exposed = 0.3; significance = 1%; power = 95% 

Proportion exposed = 0.5; significance = 5%; power = 80% 

Proportion exposed = 0.5; significance = 5%; power = 95% 

Proportion exposed = 0.5; significance = 1%; power = 80% 

Proportion exposed = 0.5; significance = 1%; power = 95% 
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Table 7.9 (contd) 

M Relative risk 

Proportion exposed = 0.7; significance = 5%; power = 80% 

Proportion exposed = 0.7; significance = 5%; power = 95% 

Proportion exposed = 0.7; significance = 1% ; power = 80% 

Proportion exposed = 0.7; significance = 7% ; power = 95% 

Proportion exposed = 0.9; significance = 5%; power = 80% 

Proportion exposed = 0.9; significance = 5%; power = 95% 
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Table 7.9 (contd) 

M Relative risk 

Proportion exposed = 0.9; significance = 1%; power = 80% 

Proportion exposed = 0.9; significance = 1%; power = 95% 

and 

Sample size requirements are therefore determined from the equation 

This equation involves the quantities TI, . . . , TM. The probability Pm that an individual 
matched set contributes t0.a specific Tm is given in terms of p1 and p2 by 

Pm = Pr(matched set contributes to Tm) 

As in the case of matched pairs, for approximate sample size calculations we can use 
the mean values of p1 and p, over all matched sets in this expression, rather than 
integrating it over the distribution of the p's over the matched sets. The quantities Tm 
in expression (7.10) are then replaced by NP,, where N is the total number of matched 
sets and Pm is evaluated for the mean values of p, and p2. Expression (7.10) can then 
be solved for N given a, P, p,, p2 and M. 

More complex situations in which the number of controls per case varies can clearly 
be handled in the same way (Walter, 1980), with the numerator and denominator of 
(7.9) summed over all relevant sets. There is usually little point, however, in 
introducing fine detail into what are essentially rather crude calculations. 
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A continuity correction can be incorporated into the test given by expression (7.9) by 
subtracting one half from the absolute value of the numerator. The resulting sample 
sizes differ from those obtained by omitting the continuity correction by a factor A, 
given by 

where 

and 

Sample size calculations incorporating the continuity correction into the statistical test 
are comparable to the sample sizes given in Table 7.7 for unmatched studies. 

Table 7.9 gives the number of matched sets required for a range of values of M ,  R ,  
p2,  a and p using the continuity correction. The values can be compared with those in 
Table 7.7 for the number of cases required in unmatched analyses, to indicate the 
effect of matching on the sample size. As a case of special interest, we have included in 
Table 7.9 a large value of M .  This corresponds to the situation in which one uses all 
available individuals as controls, of interest in the context of 95.4, where the entire risk 
set is potentially available. 

We now turn to the question of how many controls should be selected for each case. 
There are several contexts in which this issue can be discussed, as outlined in Chapter 
1. We may be in a situation, as in 95.4, in which all data are available and sampling 
from the risk sets is done solely for convenience and ease of computing. We should 
then want the information in the case-control series to correspond closely to the 
information in the full cohort, and we should select sufficient controls per case for the 
information loss to be acceptably small. Thus, in Table 7.9, we compare the power 
achieved by a given value of M with the value obtained when M is infinite, or, more 
generally, use expression (7.11) to evaluate the power (i.e., Z,+) for a range of values 
of M and R .  

In other situations, the cohort may be well defined and the cases identified but 
information on the exposures of interest not readily available and the cost of obtaining 
it a serious consideration. One should then assess the marginal gain in power 
associated with choosing more controls. 

On other occasions, as would arise in many conventional case-control studies, the 
investigator may be able to decide on both the number of case-control sets and the 
number of controls per case. The question would then be to decide on the optimal 
combination of controls per case and number of cases. 

Several authors have considered optimal designs in terms of the costs of inclusion in 
the study of cases and controls (Schlesselman, 1982). On occasion, the separate costs of 
cases and controls may be available, and a formal- economic calculation can then be 
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made. The more usual situation, however, is one in which one wants to know the cost 
in terms of the number of individuals required in the study, for different case-control 
ratios. For example, the rate at which cases are registered may be a limiting factor, and 
one would like to assess the cost, in terms of the number of extra controls required, of 
reducing the duration of the study by half, i.e., halving the number of cases, keeping 
the power constant. 

The values in Table 7.9 can be used to provide answers to all three of these 
questions. 

7.7 Efficiency calculations for matched designs 

As an alternative to the criterion of power to compare different designs, one can use 
the efficiency of estimation of the parameter of interest, given by the expectation of the 
inverse of the variance of the estimate. The parameter of interest is often taken as the 
logarithm of the relative risk. As a comparative measure, the efficiency has attractions, 
since interest is usually centred more on parameter estimation than on hypothesis 
testing. For parameter values close to the null, power and efficiency considerations 
give, of course, very similar results. For parameter values distant from the null, 
however, the two approaches may diverge considerably. Efficiency considerations have 
the additional advantage that, at least in large samples, they can be derived directly 
from the second derivative of the likelihood function evaluated at just one point in the 
parameter space (see 57-11). 

(a)  Relative size of the case and control series in unmatched studies 

In the simplest situation, of a single dichotomous variable, the results of a 
case-control study can be expressed as 

Exposure Total 

Case a b 1 

Control c d n 2 

If p1 is the probability of exposure for a case, and p2 the corresponding probability for 
a control, then 

and in large samples the variance of the estimate of log R is given by 

When n2 is large compared to n,, as it typically would be in a cohort study, the 
variance is dominated by the first two terms. If we write n2 = kn,, so that k is the 
number of controls per case, then we can clearly evaluate (7.13) for different values of 
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p2,  R and k.  When the relative risk is close to unity, then the efficiency relative to 
using the entire cohort for different values of k is well approximated by (1 + l / k ) - ' .  
The relative efficiency with k = 1 is thus SO%, and with k = 4 is 80%. Clearly, the 
marginal increase in relative efficiency as k increases beyond 4 becomes slight, hence, 
the conventional dictum that it is not worth choosing more than four controls per case. 
This is true, however, only when the expected relative risk is close to unity. As the 
relative risk diverges from one, considerably more than four controls per case may be 
necessary to achieve results close to those given by the entire cohort. Figure 7 . 1 A  

Fig. 7.1 Efficiency of case-control designs for differing values of the relative risk for a 
single dichotomous exposure E 

The efficiency of a design, defined as vk/v,,  where vk represents the asymptotic variance of the estimated 
log relative risk when using k controls per case, depends on both the relative risk and the control exposure 
probability p2. Efficiencies for unmatched designs were computed from the unconditional likelihood (A). 
From Whittemore and McM-illan (1982). Efficiencies for matched designs were computed from the 
conditional likelihood, assuming control exposure probabilities p2 are constant across matching strata (B). 
From Breslow et al. (1983) 
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shows the change in efficiency for changing k, relative to using the entire cohort, for a 
number of values of p2 and R.  

(b) Number of controls per case in a matched study 

With M controls per case and the layout of §7.6(b), the maximum likelihood 
equation for R is given by 

(see 55-17 in Volume I),  from which the expectation of the inverse of the variance of 
log R is given by 

TmmR(M-m+ 1) 
[Var log R]-' = C 

m,l (mR + M - m + I ) ~ '  

Using approximate values for Tm given by (7.11), we can evaluate this expression for 
given values of R, M and p2. As in the previous paragraph, large values of M 
correspond to the inclusion of the entire risk set (see 95.4), and the relative values one 
obtains for small M give the relative efficiency of choosing a small number of controls 
per risk set. Results are given in Figure 7. lB,  taken from Breslow et al. (1983), which 
can be compared with Figure 7.1A. From both figures it is clear that as the relative risk 
increases, for small values of p,, a substantial loss is sustained by selecting only a small 
number of controls. When R = 1, one has the same result as in the previous section, 
that the efficiency relative to a large number of controls is given by M/(At + 1). This 
result is a convenient rule of thumb when R is close to 1; but, as R increases, for many 
values of p2 it becomes increasingly misleading. 

7.8 Effect of confounding on sample size requirements 

We now consider the effect on the required sample size if account must be taken of a 
confounding factor. We consider the situation in which we have a single polytomous 
confounding variable, C, which can take K different values. We assume that the 
situation is given by the following layout for each stratum, and for simplicity treat the 
case of equal numbers of cases and controls. We assume further that there is no 
interaction. 

Exposure Total control Stratum i (C  takes value i) 
population 

Number of controls Relative risk of disease 

where n is the total number of controls. Thus, RE is the exposure-related relative risk 
for disease given C, Rci is the relative risk of the ith level of the confounder given E, 
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pli  is the proportion of those exposed to E also exposed to Ci, p,, is the proportion of 
those not exposed to E who are exposed to Ci, and P is the proportion exposed to E in 
the control population. We have taken Rc, = 1. 

When C is not a confounder, inferences on RE can be based on the pooled table 
given by 

Case Control 

Exposed nPRE/2 nP  
Not exposed n(1-P) /2  n(1-P)  

where 2 = (PRE + 1 - P). 
For a given value of RE, power p and significance a, the required number of cases is 

obtained by solving the equation 

log RE = ~,CN + G - ~ V E ,  (7.15) 

where VN is the variance of the estimate of log RE under the null hypothesis that 
RE = 1, and VA the equivalent variance with the given value of RE. They are given 
when inferences are based on the pooled table by 

and 

When C is a confounder, then stratification is required to give unbiased estimates of 
RE. The variances in equation (7.15) now have to be replaced by the variances of the 
stratified estimate of RE. An approximation to the variance of the Wolff estimate of 
the logarithm of RE (see expression 3.16) which has often been used in the past (Gail, 
1973; Thompson, W.D. et al., 1982, Smith & Day, 1984) is given by 

where V; is the variance of the logarithm of the odds ratio derived from stratum i (given 
by the expression from stratum i corresponding to VN and VA of the previous 
paragraph). Vw can be calculated for the null case (RE = 1), Vw,N, say, and for 
values of RE of interest Vw,,, say. We then solve for 

log RE = z , K N  + % - D G .  

Writing 

we have 
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and 

where 

2; = Wli + W2i = W3i + W4i 

Wli = Ppli + (1 - P)p2, = proportion of controls in stratum i 

WZi - (PpliRctRE + (1 - P)p2iRci)/Z' = proportion of cases in stratum i 

W3i = Ppli(l + RciRE/Z1) = proportion exposed in stratum i 

W4i = (1 - P)p2,(l + RCilZ1) = proportion nonexposed in stratum i. 

In the situation with only two strata, extensive tabulations have been published (Smith 
& Day, 1984) for a range of values of P, pli, pZi, RE and Rc. Some of the results are 
given in Table 7.10. The main conclusion to be drawn is that, unless C and E are 
strongly related, or C strongly related to disease (meaning by 'strongly related' an odds 
ratio of 10 or more), an increase of more than 10% in the sample size is unlikely to be 
needed. An alternative approach is through approximations to the variance of 
estimates obtained through the use of logistic regression, which has been used to 
investigate the joint effect of several confounding variables (Day et al., 1980). Results 
using this approach restricted to the case of two dichotomous variables are also given in 
Table 7.10; for values of Rc near to one, the approximation is close to the approach 
given above. For several confounding variables that are jointly independent, condi- 
tional on E, as a rough guide one could add the extra sample size requirements for 
each variable separately. 

7.9 Change in sample size requirements effected by matching 

If a matched design is adopted, then equal numbers of cases and controls are 
included in each stratum. Usually, -the numbers in each stratum would be determined 
by the distribution of cases rather than of controls (i.e., one chooses controls to match 
the available cases), so that they would be given by n times the W, of the preceding 
section. The computation then proceeds along similar lines to that of the previous 
section, and the sample size is given by 

where v L , ~  and v&, correspond to V , ,  and Vw,, but with the constraint of 
matching. ~ l t e r n a t i v e l ~ ,  one can compare the relative efficiencies of matched and 
unmatched designs, in terms of the variance of the estimates. Table 7.11, from Smith 
and Day (1981), compares the efficiency of the matched and unmatched designs. The 
main conclusion is that unless C is strongly related to disease (odds ratio greater than 
5 )  there is little benefit from matching. A similar derivation is given by Gail (1973). 
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Table 7.10 Increase in sample size required to test for a main effect i f  the analysis must incorporate 
a confounding variable. The ratio (x100) of the sample sizes, nc and n, required to have 95% power to 
detect an odds ratio associated with exposure, RE, at the 5% level of significance (one-sided) where 
nc =sample size required allowing for stratification on confounding variable C and n = sample size 
required if stratification on C is ignored 

a Approximation to (ncln) x 100 based on the normal approximation to logistic reqression = 1 / ( 1  - q2), where q  = correlation 
coefficient between E and C, q2 = P(1.- P)(p, - h ) 2 / { ( P p l  + (1 - P ) h ) ( l  - Pp, - (1 - P)pJ] .  See Smith and Day (1984). 
P  = proportion of controls exposed to E ;  
pi = proportion exposed to E who were also exposed to C; 
h = proportion not exposed to E who were exposed to C; 
R,, =odds ratio measure of association between E and C 
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Table 7.1 1 Relative efficiency of an unmatched to a matched design, in both cases with a stratified 
analysis, when the extra variable is a positive confounder. The body of table shows the values of 
100 x VM,/Vsa (where MS = 'matched stratified'; S = 'stratified') 

a From Smith and Day (1981) 

7.10 Interaction and matching 

Occasionally, the major aim of a study is not to investigate the main effect of some 
factor, but to examine the interaction between factors. One might, for example, want 
to test whether obesity is equally related to pre- and post-menopausal breast cancer, or 
whether the relative risk of lung cancer associated with asbestos exposure is the same 
among smokers and nonsmokers.. The basic question of interest is whether two relative 
risks are equal, rather than if a single relative risk is equal to unity. For illustrative 
purposes, we consider the simplest situation of two 2 x 2 tables, with a layout as before 
but restricted to two strata and with an interaction term, R,, added. 
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Exposure Proportion of Confounder Proportion of Relative risk 
population population of disease 

If $, is the odds ratio associating E with disease in the stratum with C+,  and $, the 
corresponding estimate in the stratum with C - ,  then 

and the required sample size is given by the solution of 

where VN is the expected value of Var(1og R,) in the absence of interaction, and' V, is 
the expected value of Var(1og R,) at the value R,. Some results are shown in Figures 
7.2, 7.3 and 7.4. The most striking results are perhaps those of Figure 7.4, in which the 

Fig. 7.2 Sample size for interaction effects between dichotomous variables. Size of 
study required to have 95% power to detect, using a one-sided test at the 5% 
level, the difference between a two-fold increased risk among those exposed 
to E and C and no increased risk among those exposed to E but not to C 
(RE = 1; R, = 2). The variable C is taken to be not associated with exposure 
( p ,  =p2 = p )  and not associated with disease among those not exposed to E 
(Rc = 1). From Smith and Day (1984) 

Proportlon of populatlon exposed to E 
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Fig. 7.3 Sample size for interaction effects between dichotomous variables. Size of 
study required to have 95% power to detect, using a one-sided test at the 5% 
level, the difference between no increased risk among those exposed to E but 
not to C (RE = 1) and an Rz-fold increased risk among those exposed to both 
E and C. It has been assumed that 50% of the population are exposed to C 
(pl = p2 = 0.5) and C is not associated with disease among those not exposed 
to E (Rc = 1). From Smith and Day (1984) 

0L I I I I I I I I I .1 . 2  - 3  .4 . S  .6 .7 - 8  .9 

Proportion of populatlon exposed to E 

sample size required to detect an interaction of size Rz is compared to the sample size 
required to detect a main effect of the same size. The former is always at least four 
times the latter, and often the ratio is considerably larger. This difference can be seen 
intuitively, for, whereas 

Var(1og R,) = u1 + u2, 

we have 

Var(1og RE) = ulu2/(ul + u2), approximately, 

and the ratio (ul + u2)2/ulu2 is always greater than or equal to 4, increasing the greater 
the disparity between u2 and u,. 

One might imagine that matching, by tending to balance the strata, would improve 
tests for interaction, but in general the effect is slight (Table 7.12). Matching can, on 
occasion, have an adverse effect. 
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Fig. 7.4 Ratio of sample sizes required to have 95% power to detect, using a 
one-sided test at the 5% level, (i) an interaction of strength RI and (ii) a 
main effect of strength RI (relative risk of RE for exposure to E for both 
levels, assuming 50% of the population exposed to E, p, =p, = p  and C not 
associated with disease among those not exposed to E (Rc = 1)). From Smith 
and Day (1984) 

Proportion of population exposed to C (p) 

7.11 More general considerations 

The previous sections have considered the simple case of dichotomous variables and 
power requirements for essentially univariate parameters. A more comprehensive 
approach can be taken in terms of generalized linear models. If interest centres on a 
p-dimensional parameter 0, then asymptotically the maximum l'lkelihood estimate of 0, 
8, say, is normally distributed with mean 00, the true value, and variance covariance 
matrix given by, the inverse of 1(0), the expected information matrix, the i,jth term of 
which is given by 
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Table 7.12 Effect of matching on testing for a non-null interaction. The ratio (x100) of the 
sample sizes, nl(MS) and nl(S) required to have 95% power to detect a difference at the 5% 
level of significance between an odds ratio associated with exposure E of RE among those not 
exposed to C and an odds ratio for E of RERl among those exposed to C, where 
n,(MS) = sample size required in a matched stratified study and n,(S) = sample size required in 
an unmatched studya 

p,(=&) Rc = 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0 5.0 

0.1 0.1 105 73 48 110 72 46 1?6 77 43 151 89 46 
0.3 102 88 89 106 87 86 116 87 76 133 93 74 
0.5 100 102 123 101 101 125 106 97 111 115 98 106 
0.7 98 114 145 96 115 156 96 107 137 96 102 134 
0.9 96 124 158 92 127 178 87 115 152 78 106 156 

0.5 0.1 116 88 62 117 93 67 137 115 80 125 115 90 
0.3 109 95 92 110 97 92 128 109 92 124 111 95 
0.5 102 101 116 102 100 112 113 101 103 114 103 100 
0.7 93 106 134 93 103 126 92 93 112 95 93 105 
0.9 84 111 147 82 106 137 64 84 119 65 81 109 

0.9 0.1 118 98 74 111 99 81 113 '111 98 105 106 99 
0.3 111 99 94 108 99 95 117 111 99 112 108 99 
0.5 102 100 112 102 100 106 112 103 100 112 104 100 
0.7 90 101 126 94 100 115 91 89 101 99 94 100 
0.9 76 102 138 82 100 123 54 71 103 67 79 100 

a From Smith and Day (1984) 
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where t(0)  is the logarithm of the likelihood function. An overall test that 0 = 8, is 
given by comparing 

with a x2 distribution on p degrees of freedom. 
Power and sample size considerations are then approached through the distribution 

of the quadratic form (7.16) under alternative values for the true value of 0. In the 
general case, for an alternative 0,, 0 will h u e  mean 0, and variance-covariance matrix 
I-'(O,), which will differ from I-'(OO). Power calculations will then require evaluation 
of the probability that a general quadratic form exceeds a certain value, necessitating 
direct numerical integration. Some special situations, however, give more tractable 
results. Whittemore (1981), for example, has given a sample size formula for the case 
of multiple logistic regression with rare outcomes. In the univariate case, expression 
(7.16) leads directly to the following relationship between sample size N and power P :  

N = {&I-ln(eo) + z , - , ~ - ~ ~ ( e , ) ) l ( e ,  - 

where now I refers to the expected information in a single observation. 

Table 7.13 Degree of approximation in sample size 
calculation assuming that the test statistic has the 
same variance under the alternative as under the null 
hypothesis - example of an unmatched case-control 
study with no continuity correction in the test statis- 
tic; equal number of cases and controls. 
Significance = 0.05; power = 0.80 

(a) Sample sizes calculated using expression (7.7), 
without the continuity correction 

Proportion exposed in Relative risk 
control population . 

1.5 2.0 2.5 5.0 10.0 

(b) Sample sizes calculated using expression (7.17) 

Proportion exposed in 
control population 

Relative risk 

1.5 2.0 2.5 5.0 10.0 

764 247 136 40 19.0 
357 124 72 26 15.4 
325 120 73 30 20.0 
420 163 103 74 33 
1056 430 282 140 103 
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More generally, in the multivariate situation, asymptotically only alternatives close to 
O0 are of interest, since power for distant alternatives will approach 100%. One can 
then take I(8,) to be approximately the same as I(OO). Under the alternative 
hypothesis, the statistic 

will then follow a noncentral x2 distribution on p degrees of freedom, with 
noncentrality parameter 

and the power will be given by the probability that this noncentral x2 distribution 
exceeds the cr point of the central x2 distribution on p degrees of freedom. Greenland 
(1985) discusses this approach in a number of situations. 

An example of the degree of approximation used in this approach is given in Table 
7.13, for unmatched case-control studies without the continuity correction. The 
relationship between power and sample size provided by this approach is, using the 
notation of expression (7.7), 

In Table 7.13, the results of using this expression in place of (7.7) are compared, no 
continuity correction being used in the latter. For moderate values of the relative risk, 
the difference is some 5% to 10%; for values of the relative risk of 5 or greater, the 
approximation can overestimate the required sample size by as muth as 50%. 

Since, on many occasions, the likelihood function and its derivatives take relatively 
simple values under the null hypothesis, this approach clearly has considerable utility 
when interest centres mainly on detecting weak or moderate excess risks. 
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APPENDIX IA 

THE BRITISH DOCTORS STUDY 

This prospective study of the health effects of smoking started in 1951. The first 
report appeared in 1954 (Doll & Hill, 1954) and was followed at regular intervals by 
the results of further follow-up (Doll & Hill, 1956, 1964; Doll & Peto, 1976, 1978; Doll 
et al., 1957, 1980). Members of the medical profession in the United Kingdom were 
asked to fill in a simple questionnaire, which was sent out on 31 October 1951 to 59 600 
men and women on the Medical Register. 

The questionnaire was intentionally kept short and simple to encourage a high 
proportion of replies. The doctors were asked to classify themselves into one of three 
groups - (1) whether they were, at the time, smoking; (2) whether they had smoked 
but had given up; or (3) whether they had never smoked regularly (that is, had never 
smoked as much as one cigarette a day, or its equivalent in pipe tobacco, for as long as 
one year). Present smokers and ex-smokers were asked additional questions. The 
former were asked the age at which they had started smoking and the amount of 
tobacco that they were currently smoking, and the method by which it was consumed. 
The ex-smokers were asked similar questions but relating to the time just before they 
had given up smoking. 

In a covering letter, the doctors were invited to give any information on their 
smoking habits or history that might be of interest, but, apart from that, no 
information was sought on previous changes in habit (other than the amount smoked 
prior to last giving up, if smoking had been abandoned). The decision to restrict 
questions on amount smoked to current smoking habits was based mainly on the results 
of the earlier case-control study (Doll & Hill, 1950, 1952), based on interviews with 
nearly 5000 patients. This study had shown that the classification of smokers according 
to the amount that they had most recently smoked gave almost as sharp a 
differentiation between the groups of patients with and without lung cancer as the use 
of smoking histories over many years - theoretically more relevant statistics, but clearly 
based on less accurate data. 

The results of ten years' follow-up were published in 1964 (Doll & Hill, 1964), in 
which a description of the cohort and its representativeness for all British doctors was 
described. The results of ten years' follow-up for men was published in 1976 (Doll & 
Peto, 1976) and of 22 years' follow-up for women in 1980 (Doll et al., 1980). 

During the study, further questionnaires were sent out on three separate occasions to 
men (see Table IA.1) and on two occasions to women. The purpose was partly to 
obtain detailed information on smoking habits, in particular giving up smoking, and 
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Table IA.l. Response to questionnaires 

Second Third Fourth 
questionnaire questionnaire questionnaire 

Survey period 

Known to have died before end 
of survey period 

Presumably alive at end of 
survey period 

Replied by end of survey period 
(and % of men then alive) 

Reasons for nonresponse: 
Too ill 
Refused 
Address not found 
Unknown and other reasons 

November 
1957- 
31 Oct. 1958 

March- 
31 Oct. 1966 

July- 
31 Oct. 1972 

a Includes all men who refused ~reviouslv 

also to ask additional questions, the relevance of which had emerged during the period 
of follow-up. Degree of inhalation was asked in these questionnaires, and the use of 
filter-tipped or plain cigarettes asked in the last questionnaire. 

From the 59 600 individuals approached initially, 40 637 replies were received that 
were sufficiently complete to be used - 34 445 from men and 6192 from women. From a 
one-in-ten random sample of the register, it was estimated that this represented 
answers from 69% of the men and 60% of the women alive at the time of the inquiry. 
The degree of self-selection in those who replied was assessed in terms of the overall 
mortality using this one-in-ten sample. The standardized death rate of those who 
replied to the first questionnaire was only 63% of the death rate for all doctors in the 
second year of the inquiry, and 85% in the third year. In the fourth to tenth years the 
proportion varied about an average of 93%, and there was no evidence of any regular 
change with the further passage of years. Evidently the effect of selection did not 
entirely wear off, but after the third year it had become slight. One factor in this 
favourable mortality was the presence among those who replied of a relatively large 
number of nonsmokers and a relatively small number of heavy cigarette smokers, 
demonstrated by a small inquiry undertaken in 1961. Two small samples were drawn of 
(1) those who had replied in 1951 and (2) those who had not. Eliminating those who 
had died between 1951 and 1961, there were 267 previous 'answerers' and 213 previous 
'nonanswerers'. They were asked about their smoking habits in 1961, and 261 (98%) of 
the answerers and 179 (84%) of the nonanswerers responded. Comparison of these two 
groups shows 21% (answerers) and 6% (nonanswerers) nonsmokers and 15% 
(answerers) and 28% (nonanswerers) as moderate or heavy cigarette smokers (15 or 
more daily). 

The numbers of men replying to the subsequent questionnaires and the numbers not 
replying for different reasons are shown in Table IA. 1. Further questionnaires were not 
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sent to doctors who had been struck off the Medical Register nor to those who had 
refused to answer previously or had asked not to be written to again, although their 
mortality was still monitored. The proportions of survivors who did not reply in 1957, 
1966, and 1972 were, respectively, 1.6%, 3.6%, and 2.1%. 

Information about the death of doctors was obtained at first directly from the 
Registrars-General of the United Kingdom, who provided particulars of every death 
identified as referring to a medical practitioner. Later, lists of deaths were obtained 
from the General Medical Council, and these were complemented by reference to the 
records of the British Medical Association and other sources at home and abroad. 
Some deaths came to light in response to the questionnaires. Others were discovered in 
the course of following up doctors who had not replied to or who had not been sent 
subsequent questionnaires. Of the 34 440 men studied, 10 072 were known to have died 
before 1 November 1971, 24265 were known to have been alive at that date, and 103 
(0.3%) were not yet traced. 

Many of the 103 untraced doctors were not British, and 67 (65%) were known to 
have gone abroad. It was felt unlikely that more than about a dozen deaths relevant to 
the study could have been missed. 

Information on the underlying cause of death in the 10072 doctors known to have 
died before 1 November 1971 was obtained for the vast majority from the official death 
certificates. Except for deaths for which lung cancer was mentioned, the certified cause 
was accepted and (unless otherwise stated) the deaths classified according to the 
underlying cause. (In only four cases was no evidence of the cause obtainable.) The 
underlying causes were classified according to the seventh revision of the International 
Classijication of Diseases (World Health Organization, 1957), except that a separate 
category of 'pulmonary heart disease7 was created. 

Cancer of the lung, including trachea or pleura, was given as the underlying cause of 
467 deaths and as a contributory cause in a further 20. For each of these 487 deaths, 
confirmation of the diagnosis was sought from the doctor who had certified the death 
and, when necessary, from the consultant to whom the patient had been referred. 
Information about the nature of the evidence was thus obtained in all but two cases. 
Doubtful reports were interpreted by an outside consultant, with no knowledge of the 
patient's smoking history. As a result, carcinoma of the lung was accepted as the 
underlying cause of 441 deaths and as a contributory cause of 17. Twenty-six deaths 
were considered to be due to other underlying causes and three to other contributory 
causes. 

The results for female doctors were published later, in 1980, and for 22 rather than 
20 years of follow-up. The methods of enquiry were similar to those used for male 
doctors except that only three questionnaires were sent, in 1951, 1961 and 1973. 
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THE ATOMIC BOMB SURVIVORS - THE LIFE-SPAN STUDY 

A vast programme of studies has been conducted under the aegis of the Radiation 
Effects Research Foundation (RERF) and its predecessor, the Atomic Bomb Casualty 
Commission (ABCC), investigating both the short- and long-term effects of the 
radiation exposure suffered by the survivors of the atomic bomb explosions in Japan. 
These effects include: 

Early somatic effects: 
- acute radiation sickness 
- abortion 
- impaired fertility 
- maldevelopment of the embryo and foetus 
Late somatic effects: 
- impairment of growth and stature 
- cataract of the lens of the eye 
- impairment of fertility 
- cytogenetic abnormalities 
- cancer 
- other diseases 
- effects on ageing 
- effects on immunity 
Genetic effects: 
- stillbirths, changes in sex ratio, reduced birth weight, neonatal mortality, birth 

defects 
- cytogenetic abnormalities 
- protein polymorphisms 
The main results on cancer mortality have come from the Life-span Study, the 

original description of which is given in a paper by Beebe et al. (1962). A feature of the 
Life-span Study has been the regular publication of technical reports by the RERF, 
with analyses of updated results. 

The study was set up as a systematic search for any mortality differential associated 
with radiation, one aim being to ensure that effects would not be missed merely 
because they were not specifically looked for at the right time. It was intended that any 
new mortality differential uncovered by the Life-span Study could be pursued by 
pathologists and clinical investigators in a more definitive fashion. A portion of the 
mortality sample was the subject of a continuing clinical investigation embracing 
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standard physical and laboratory investigations every two years, plus a wide variety of 
short-term, special studies. 

The cohort for the Life-span Study was intended to include all survivors who had 
received appreciable radiation exposure, together with survivors more distant from the 
hypocentres of the explosions, who received lower doses. In the absence of suitable 
sampling frames established shortly after the bombs fell, the 1950 national census was 
used as a basis for cohort definition. In that census, 284000 survivors were 
enumerated, of whom 195 000 lived in one of the bombed cities. The Japanese citizens 
among this latter group, with place of family registration in the city or nearby, 
constituted the sampling base. It was decided to include all individuals in this group 
who had received appreciable radiation, and a stratified sample of the remainder. At 
the time the sample was constructed, the air dose as a function of distance from the 
hypocentre of the bombs was estimated to be about 100 rads at 1500 metres, 15 rads at 
2000 metres and 3 rads at 2500 metres. All eligible individuals who were within 2500 
metres were therefore included. A comparison group was formed from among those 
more distally located at the time of the bomb, of the same size as the group exposed 
less than 2000 metres and of the same age and sex composition. Matching was done 
separately for people of each sex by single year of age. 

A second control group was formed of people not resident in either of the two cities 
when the bombs fell, mainly to guard against the risk of missing effects that were not 
dose-dependent. Most of this group consisted of migrants to the two cities after the 
war, with considerable differences in background lifestyle. Doubts were raised early on 
as to the group's comparability, which were later confirmed (Beebe et al., 1971), and 
little reference is made to it in the more recent reports. 

In the original 1950 census, there was an additional group (known as the 'reserve7 
group) of 9527 survivors exposed within 2500 metres, but whose place of family 
registration was too distant from the cities to satisfy the initial eligibility criterion. This 
criterion had been introduced to ensure uniformity in the follow-up procedures (see 
next section), but experience obtained during the conduct of the study indicated that 
the family registration system was highly effective for follow-up, and that this exclusion 
criterion was unnecessary. In the more recent reports, this group was included in the 
study cohort (Beebe et al., 1971). 

Details of the full sample from the 1950 census are given in Table IB.l, which 
indicates those selected for the Life-span Study. 

Follow-up procedures were based on the Japanese Family Registration System. 
Under the Family Registration Law of Japan (1947), a register is maintained by the 
mayor or equivalent authority for every family registered in his jurisdiction, and vital 
events are posted therein. The place of registration corresponds to a legal address for 
family purposes and is seldom changed even when physical residence changes. Officials 
responsible for the registration of births and deaths throughout Japan send copies of 
these vital documents to the places of family registration. Changes in the place of 
family registration and creation of registers for new families are so effected that 
knowledge of any one place of registration is a virtual guarantee that the present place 
of registration can be learned and survival status ascertained. 

In connection with the present study, a test was made of the family registration 
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Table IB.l .  The master sample, proper and reserve, by component, 
exposure category and citya 

City and comparison group Total Proper part Reserve 

Selected Not 
selected 

Hiroshima 
Total 
A 0-1 999 m from hypocentre 
B 2000-2499 m 
cb 2500-9999 m 
Db 10 000+ m or not in city 

Nagasaki 

Total 
A 0-1999 m from hypocentre 
B 2000-2499 m 
cb 2500-9999 m 
Db 10 000+ m or not in city 

Total 

Total 163720 99393 26799 37 528 
A 0-1999 m from hypocentre 33 833 28 130 - 5 703 
B 2000-2499 m 20492 16 668 - 3 824 
cb 2500-9999 m 62 630 28 017 23 648 10 965 
Db 10 000+ m or not in city 46765 26578 3151 17036 

a From Kato (1984) 
Matched by age and sex to group A 

system. For the Life-span Study, 20 000 individuals were checked against their family 
registers, and for only 17 could the register not be found. Investigation showed that 
nine of these were foreigners not eligible for family registration; for one person a 
register should have been made but had not been; and only seven, therefore, were 
really unknown. Since these individuals were being kept under active clinical 
surveillance, their mortality was known. The family registers returned mortality 
information on all but nine of the 1300 known deaths, or 99.3%, indicating that the 
family register approach provides information of nearly perfect completeness. 

Information on cause of death was provided from vital statistics death schedules by 
the National Institutes of Health under official procedures specific to this joint 
NIH-ABCC study. 

The cause of death as given on death certificates has been compared with that given 
by autopsy findings for those invididuals who came to autopsy - a small overall 
proportion - as shown in Table IB.2. To achieve comparability with official Japanese 
vital statistics, cause of death was coded according to the WHO International 
Classijication of Diseases, Injuries, and Causes of Death. The 7th, 8th and 9th 
Revisions were used for the time periods 1950-1967, 1968-1978, and 1979 onwards, 
respectively 
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Table IB.2. Accuracy of causes of death -autopsy cases among Life-span Study sample, 
1961-1975" 

Cause of death Death Autopsy Agreement Confirmation Detection 
certificate report rate rate 

Tuberculosis 
Malignant neoplasm of: 

buccal cavity & pharynx 
oesophagus 
stomach 
large intestine 
rectum 
liver, gallbladder, bile ducts 
pancreas 
breast 
uterus 
prostate 
urinary organs 
malignant lymphomas 
leukaemias 

Benign neoplasms and neoplasms of 
unspecified nature 

Disease of blood and blood- 
forming organs 

lschaemic heart disease 
Gastric, duodenal & peptic ulcer 
Cirrhosis of liver 
Nephritis & nephrosis 

a From Kato (1984) 

Great efforts have been made to establish the dose received by each member of the 
Life-span Study group, and also the degree of accuracy of these dose estimates. In the 
early reports, the radiation dose estimates used were the so-called Tentative 1957 dose 
(T57D), which were considered to be accurate within a factor of 2. For each survivor 
included in the Life-span Study, information on location and shielding at the time of 
the bomb was obtained by interview and, in some cases, by mail questionnaire. These 
estimates were later revised, to give the T65 dose, which were used in reports on 
mortality experience up to 1974 (Beebe et al., 1977). A minor change in the location of 
the hypocentre of the Nagasaki explosion led to some revision of the T65 dose, to give 
the T65DR estimates used in report number 7 (Kato & Schull, 1982). The average 
error in these estimates has been evaluated as 30% (Jablon, 1971). Further work has 
indicated that the T65DR estimates themselves may need major revision, based on a 
reassessment mainly of exposure to neutrons (Loewe & Mendelsohn, 1981). 

Jablon (1984) and Fujita (1984) both discuss dosimetry revisions, in a monograph 
(Prentice & Thompson, 1984) of great value to those interested in the current status of 
the follow-up studies of the atomic bomb survivors. 
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HEPATITIS B AND LIVER CANCER 

A large number of case-control studies and several cohort studies have been 
undertaken to investigate the association between the hepatitis B surface antigen 
(HBsAg) carrier state and the development of liver cancer. The first prospective study 
to report conclusive results was from Taiwan (Beasley et al., 1981), in which male 
Chinese Government employees were enrolled through routine health care services. 
Since the term 'liver cancer' on a death certificate may imply secondary liver cancer, 
and hepatitis B virus (HBV) is related only to primary hepatocellular carcinoma 
(PHC), the causes of death of the study subjects were investigated in some detail. The 
study design and procedures were as follows (Beasley et al., 1981). 

The study was conducted among male Chinese Government employees (civil 
servants) in Taiwan whose life and health insurance system provides almost total 
ascertainment of the fact of death, with excellent determination of cause of death. The 
study was restricted to men, since the incidence of PHC is three to four times higher in 
men than in women, and male government employees are on average older and stay in 
government service longer. Initially, enrolment was restricted to men aged 40 to 59 
years; later, because of the general popularity of the project, men of all ages were 
recruited. Study participants were recruited through two sources: 

(1) at the Government Employees' Clinic Centre (GECC) during routine free physical 
examinations or at selected other clinics (e.g., dental, ear, nose and throat and 
ophthalmology), where no bias in liver disease status was considered likely (GECC 
group) 

(2) among men recruited from the GECC ten years earlier, when they were 40-59 
years old, for a prospective study of cardiovascular disease risk factors; they had 
been kept under active surveillance since then (CVDS group). 

There were 1480 men in the CVDS group and 21 227 men in the GECC group. The 
CVDS and GECC groups were similar except that the CVDS group was older. It was 
stated that government employees and the general population were similar with respect 
to the frequency of HBV infections, 'the HBsAg carrier rate and the mortality rate 
from PHC and cirrhosis. 

PHC was detected through health and life insurance, mandatory for all government 
employees and provided by a single large government bureau operating exclusively for 
this purpose. Insurance was usually retained after retirement and could be cancelled 
only at the request of the retired person. All deaths of active government employees 
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and deaths of most retired government employees were thus known to the insurance 
bureau. Monthly lists of recent deaths and newly retiring employees who had cancelled 
their insurance were received from the bureau. In the 1981 report, only 643 men had 
cancelled their insurance (2.8% of study subjects), of whom 569 had been contacted by 
letter or telephone. Thus, only 74 (0.3%) of the original cohort might have died and 
the death not be known to the study. 

To verify the completeness of the insurance system for the ascertainment of deaths, 
all HBsAg-positive men (3454) and controls matched for age and province of origin 
with each HBsAg-positive man were actively followed. This active surveillance 
involved annual completion of a health questionnaire and retesting for HBV markers. 
Adherence to follow-up averaged 95% annually. The state of health of those who 
failed to return for follow-up was determined by telephone or home visit. Contact was 
lost with only 74 men, whose vital status could not be ascertained. From this active 
surveillance we were able to verify that among men retaining their insurance all deaths 
are known to us. 

The causes of death of all study subjects were investigated through the records of 
preceding periods in hospital. Among the 41 deaths due to PHC reported in 1981, 19 
(46.3%) were confirmed histologically. Nineteen of the remaining patients had raised 
serum alpha fetoprotein (AFP) levels and changes on a liver scan, or angiography, or 
both, interpreted as PHC; one more patient had scans interpreted as PHC but AFP 
was not measured; and the remaining two patients had raised AFP levels and their 
clinical picture was interpreted as PHC. The clinical picture, liver scan and an- 
giographic patterns did not differ between histologically confirmed and unconfirmed 
cases. Deaths attributed to cirrhosis all showed unequivocal clinical evidence of chronic 
hepatic failure in the presence of portal hypertension and other classical evidence of 
cirrhosis. 

All recruitment and follow-up specimens were tested for HBsAg, alanine aminotrans- 
ferase and AFP. Anti-HBs and anti-HBc (hepatitis B core antigen) testing were too 
expensive to undertake on all 19 253 HBsAg-negative subjects. All 1020 HBsAg- 
negative men from the CVDS group and controls matched for age and province of 
origin with each HBsAg-positive subject in the GECC group were selected from 
among the HBsAg-negative subjects for anti-HBs testing; 3661 men were tested for 
anti-HBs. Of these, all the 615 who were anti-HBs-negative were tested for anti-HBc. 
The anti-HBs and anti-HBc rates derived from the above sample were then used to 
project the frequency of these markers for the entire study population. 
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CANCER IN NICKEL WORKERS - THE SOUTH WALES 
COHORT 

The risk of nasal sinus and lung cancer associated with nickel refining had been 
established in the late 1930s. In 1949, both diseases were prescribed as occupational 
diseases in the United Kingdom when they occurred in men 'working in a factory 
where nickel is produced by decomposition of a gaseous nickel compound'. 

The principal cohort study of the South Wales cohort was first reported in 1970 (Doll 
et al., 1970) and an extension of the study in 1977 (Doll et al., 1977). Further analyses 
have been published since (Peto et al., 1984; Kaldor et al., 1986). 

The aims of the study were succinctly described by Doll et al. (1970): 
'Men employed in a nickel refinery in South Wales were investigated to determine 

whether the risk of developing carcinoma of the bronchi and nasal sinuses, which had 
been associated with the refining of nickel, are still present. The data obtained were 
also used to compare the effect of age at exposure on susceptibility to cancer induction 
and to determine the rate of change of mortality after exposure to a carcinogenic agent 
has ceased.' 

The cohort was identified using the weekly paysheets of the company, on which all 
men receiving an hourly wage were listed by name and works' reference number. 
Initially, paysheets were inspected for the first week in April of the years 1934, 1939, 
1944 and 1949, and all men were included whose names and numbers were recorded on 
any two of the sheets, unless they were noted on one of the two sheets as having been 
in the Armed Forces or transferred elsewhere for war work. By this means, the 
population was limited to men who were likely to have been employed for at least five 
years, and follow-up was facilitiated. 

The names of all the men included in the study were identified in the company's 
register of new employees. This gave the year when they were first employed and much 
other information that helped in tracing them. From 1902 to 1933 the register of new 
employees also gave the men's ages; in later years this was sometimes omitted, in 
which case it had to be obtained from other sources, such as pension records or death 
certificates. 

The study was later extended by examining the paysheets for the first week in April 
1929. It is therefore effectively restricted to men employed for at least five years who 
were still employed in 1934 or later. The follow-up has been continued until 31 
December 1981, by which time 788, or 81%, of the original cohort of 968 had died. 
Only 18 (2%) of the cohort were lost to follow-up. 
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Copies of the death certificates were obtained for all who were known to have died, 
and the cause of death was classified according to the Seventh Revision of the 
International Classification of Diseases (World Health Organization, 1957). The use of 
these rules for all periods rather than the ones that were current at the time of death 
has no effect on the estimated numbers of deaths attributed to cancers of the lung and 
nose. 

Because of the method of selection, no one came under observation until 1934. The 
man-years at risk were, therefore, calculated for the period 1934-1981. Observed and 
expected deaths were calculated only up to age 85, at least in the last two reports (Peto 
et al., 1984; Kaldor et al., 1986), to minimize the effects of misclassification on the 
death certificates in old age. The numbers of deaths that would have been expected if 
the men had suffered the normal mortality in England and Wales as a whole were 
calculated by multiplying the man-years at risk in each five-year age group and each 
calendar period (1934-1938, 1939-1943, 1944-1948, 1949-1953, 1953-1958, 1959-1963 
and 1964-1971) by the corresponding national mortality rates. Nasal cancer rates were 
not available before 1940, and the rates for 1940 were used for the earlier years. 
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THE MONTANA STUDY OF SMELTER WORKERS 

Earlier reports had indicated an excess risk of respiratory cancer among long-term 
metal miners. Among the agents possibly responsible for this increase were airborne 
radiation and arsenic compounds. The purpose of the Montana smelter study was to 
investigate the role of arsenic in the development of respiratory cancer, since smelters 
have negligible exposure to airborne radiation and higher exposure to arsenic. The 
original report was published in 1969 (Lee & Fraumeni, 1969) covering the mortality 
experience of the cohort in the period 1 January 1938 to 31 December 1963. The 
follow-up was later extended to 30 September 1977 (Lee-Feldstein, 1983). Further 
analyses of parts of the data have appeared (Lubin et al., 1981; Brown & Chu, 1983), 
the latter structuring the analysis in terms of multistage models of carcinogenesis (see 
Chapter 6). 

The study population comprised 8045 white men who had been employed as smelter 
workers for 12 or more months before 31 December 1956. Of this group, one-third was 
initially employed before 1938, one-third during 1938-1946, and one-third in 1947- 
1955. 

Company records provided for each individual the date and place of birth, social 
security number, time and place of employment for each job held within a smelter 
before 1964, year last known alive, and the date and place of death for most decedents. 
In addition, follow-up information was obtained from death registers of state health 
departments, social security claims records of the Bureau of Old Age and Survivors 
Insurance, and other governmental agencies. The mortality experience of the group 
has been followed from 1 January 1938 to 30 September 1977 (Lee-Feldstein, 1983). 

Death certificates were obtained for the smelter workers known to have died during 
the 26-year period, 1938-1963. Information on mortality and follow-up for the period 
1964-1977 was obtained from company records, the Social Security Administration and 
death registers of various health departments. Underlying causes of death were 
classified according to the International Classijication of Diseases appropriate for the 
calendar year of death and later, for convenience, were converted into the Seventh 
Revision code (World Health Organization 1957) 

The follow-up status on 30 September 1977, together with the follow-2p status given 
in the first report as of 31 December 1963, is shown in Table IE.l.  

The study group was compared with the white male population of the same states 
through the use of expected deaths obtained by multiplying the age- and cause-specific 
mortality rates for the states by the person-years at risk for each cohort of smelter 
workers. 
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Table IE.l Follow-up status of study group 

Total study 
group, 1977 

Follow-up status, 31 December 1963 

Known to Known to Vital status 
be living be deceased not known 

Known to be living 3707" 3342 0 365b 
Known to be deceased 3522 1534 1877 111 
Vital status not known 816 520 0 296 

Total, 1963 8045" 5396 1877 772 

a Includes 442 men still employed at the smelter on 30 September 1977 
b~pproximately half of the men reported lost to follow-up by Lee and Fraumeni (1969) 

were found to be alive on 30 September 1977. 
'Two persons in the original study group of 8045 were women; they have been deleted 

from the present study. 

The study group was categorized by exposure to varying levels of arsenic, sulfur 
dioxide and other chemicals. From measurements made in the smelters, each work 
arsa was rated on a scale from 1 to 10 with respect to the relative amount of arsenic 
trioxide in the atmosphere. Jobs in three areas, commonly known as the arsenic 
kitchen, cottrell, and arsenic roaster, afforded 'heavy' arsenic exposure (8-10 on the 
relative scale). 'Medium' arsenic exposure was associated with four work areas: 
converter, reverberatory furnace, ore roaster and acid plant, and casting (4-7 on the 
relative scale). Persons in all other areas had 'light' arsenic exposure (1-3 on the 
scale). Measurements in work areas may have varied over time, but it seems 
reasonable to assume that relative exposure in terms of these three broadly defined 
categories remained fixed. Most men had worked in several different areas, so, to be 
conservative, an individual was classified into one of the three arsenic groups based on 
his maximum (heaviest) exposure for the analyses reported by Lee and Fraumeni 
(1 969). 

The work areas were also categorized with respect to the level of sulfur dioxide, and 
study members were classified into one of the three exposure groups. 'Heavy' sulfur 
dioxide areas consisted of the reverberatory furnace and the converter, whereas 
'medium' areas consisted of arsenic roaster, brickyard, ferromanganese plant, lead 
shop, cottrell, casting, ore roaster and acid plant, and phosphate plant. Finally, the 
work areas were rated by the levels of exposure to silicon dioxide (silica), lead fumes 
and ferromanganese. 
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ASBESTOS EXPOSURE AND CIGARETTE SMOKING 

Several cohorts of asbestos-exposed individuals have been studied in order to 
determine the joint effect of asbestos and cigarette smoking on the risk of lung cancer. 
The largest such study is that of the North American insulators, started in 1966. It has 
given rise to a number of publications, both on the effect of asbestos and on the 
combined effect of asbestos and smoking (Selikoff et al., 1973; Hammond & Selikoff, 
1973; Hammond et al., 1979; Selikoff et al., 1979, 1980). The study was based on the 
complete 1966 membership list of the International Association of Heat and Frost 
Insulators and Asbestos Workers, which has about 120 locals in the USA and Canada. 
Much of the material handled by these insulation workers contained asbestos, so that 
all of the members can be considered as asbestos workers. In 1966, each member was 
approached with a request to complete a questionnaire containing a number of 
questions, including those on his smoking habits and his use (or nonuse) of protective 
masks (11 656 completed the questionnaire). Date of birth and date of entry into the 
trade were ascertained from union records. All of these men were traced through 31 
December 1976 and copies of the death certificates of those who died obtained. Some 
of the men on the 1966 membership list died before 1 January 1967, leaving 17 800 
alive at that date. Altogether, 2271 died in the ten-year period 1 January 1967-31 
December 1976; the number of man-years of observation totaled 166853; and the 
average age of the men during the ten-year period was 44.4. 

Since the aim of the study was to examine the joint effects of asbestos exposure and 
cigarette smoking and since the entire study group was taken to be exposed to 
asbestos, it was necessary to construct a special control group, not exposed to asbestos, 
for which the smoking history of the individuals was known. This group was obtained 
from the long-term prospective epidemiological study of the American Cancer Society 
(Hammond, 1966). Starting on 1 October 1959, 468 688 men and 610 206 women had 
been enrolled. All of them were over 30 years old at that time and most of them were 
over 40. Upon enrolment, each subject answered a detailed questionnaire; most of the 
survivors answered subsequent questionnaires distributed in 1961, 1963 and 1965. 
During that time, death certificates were obtained for those who died; and when cancer 
was mentioned on a death certificate, the doctor who signed the certificate was 
requested to supply additional information on the cause of death and the basis of the 
diagnosis. Follow-up was then discontinued for six years. Tracing of the subjects was 
resumed on 1 October 1971 and was continued through 30 September 1972. Because of 
the extremely large number of deaths after 1965, it was not feasible to request doctors 
to supply additional information on cause of death. 
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The socioeconomic distribution of the prospective study cohort differs markedly 
from that of the asbestos workers. To improve comparability, a selected subgroup of 
the overall cohort was taken as the control group, consisting of all male subjects who 
met the following criteria: white, not a farmer, no more than high-school education, a 
history of occupational exposure to dust, fumes, vapours, gases, chemicals or radiation 
and alive as of 1 January 1967 and traced thereafter. There were 73 763 such subjects. 
They were classified according to their smoking histories, and the age-specific death 
rates of each such class were computed. 

There was a problem. Death rates in the control group were known for the period 1 
January 1967 through 30 September 1972, while members of the asbestos insulation 
workers union were traced during the period 1 January 1967-31 December 1976. 
According to official mortality statistics, death rates of the general population of the 
USA changed somewhat during the second five-year period 1 January 1972-31 
December 1976 compared with the first, 1 January 1967-31 December 1971, increasing 
for some diseases and declining for others. Under the assumption that these changes 
probably also applied to the control group, the death rates of the control group were 
extrapolated to take this into account. The principal effect of the extrapolation was to 
increase the death rates from lung cancer and decrease the death rates from heart 
disease during the last five years as compared with the first five years. 

In this study, further information was obtained on the asbestos workers who died, 
including, in many instances, clinical data, histological sections and X-ray films. On the 
basis of this information, the cause of death as given on the death certificate could be 
reclassified, using the best available information. Table 1.11 gives a comparison 
between the cause of death as given on the death certificate and that based on the best 
available information. An equivalent review of the cause of death in the control group 
was not attempted, the number of deaths being too large. Care was taken to ensure 
that comparisons between the insulation workers and the control group were based on 
comparable information. 
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APPENDIX I1 

CORRESPONDENCE BETWEEN DIFFERENT REVISIONS OF 
THE INTERNATIONAL CLASSIFICATION OF DISEASES 

(ICD) 

Comparison of the three digit codes used in the 7th , 8th and 9th Revisions of the International 
Classification of Diseases 

- - - - - 

Code ICD7 ICD8 ICD9 

Lip 
Tongue 
Salivary gland 
Floor of mouth 
Other parts of mouth; mouth 

unspecified 
Oral mesopharynx 

Nasopharynx 
Hypopharynx 
Pharynx unspecified 
- 
Oesophagus 
Stomach 
Small intestine 
Large intestine, excl. rectum, 

incl. intestine NOS 
Rectum and rectosigmoid 

junction 
Biliary passages incl. 

gallbladder and liver 
specified as primary 

Liver secondary and 
unspecified 

Pancreas 
Peritoneum 

Unspecified digestive organs 

Lip 
Tongue 
Salivary gland 
Gum 
Floor of mouth 

Other and unspecified parts of 
mouth 

Oropharynx 
Nasopharynx 
Hypopharynx 
Pharynx unspecified 
Oesophagus 
Stomach 
Small intestine 
Large intestine, excl. rectum, 

incl. intestine NOS 
Rectum and rectosigmoid 

junction 
Liver and intrahepatic bile 

ducts specified as primary 

Gallbladder and extrahepatic 
bile duct 

Pancreas 
Peritoneum and 

retroperitoneal tissue 
Unspecified digestive organs 

Lip 
Tongue 
Salivary gland 
Gum 
Floor of mouth 

Other and unspecified parts of 
mouth 

Oropharynx 
Nasopharynx 
Hypopharynx 
Pharynx unspecified 
Oesophagus 
Stomach 
Small intestine 
Colon (incl. large intestine 

NOS) 
Rectum, rectosigmoid' and 

anus 
Liver and intrahepatic bile 

ducts incl. liver not specified 
as primary or secondary 

Gallbladder and extrahepatic 
bile duct 

Pancreas 
Peritoneum and 

retroperitoneum 
Other and ill-defined2 sites 

within the digestive organs 
and peritoneum, incl. 
intestine NOS 

Skin of anus is coded to skin in all three Revisions, and the anal canal coded to rectum. Anus NOS, however, is coded to skin in the 
7th and 8th Revisions, but to rectum in the 9th. 

Intestinal tract NOS is coded to 153 in ICD7 and ICD8, but to 159 in ICD9. 
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Code 
- 
160 Nose, nasal cavities, middle Nose, nasal cavities, middle 

ear and accessory sinuses ear and accessory sinuses 
(excl. skin and bone of nose in all three Revisions) 
Larynx Larynx 
Trachea, bronchus and lung Trachea, bronchus and lung 

(specified as primary) 
Lung (unspecified whether Other and unspecified 

primary or secondary) respiratory organs 
Mediastinum - 

Thoracic organs (secondary) - 

Breast (male and female) 
Cervix uteri 

Corpus uteri 
Other parts of uterus incl. 

chorionepithelioma 
Uterus unspecified 
Ovary, fallopian tube and 

broad ligament 
Other and unspecified female 

genital organs 
Prostate 
Testis 
Other and unspecified male 

genital organs 
Kidney 
Bladder and other urinary 

organs 
- 

Melanoma of skin3 

Bone and articular cartilage 
Connective and other soft 

tissues 
Melanoma of skin3 
Other malignant3 neoplasms 

of skin 
Breast (male and female) 
- 

Cervix uteri 
Chorionepithelioma 

Other malignant neoplasms 
of uterus, incl. uterus 
unspecified 

Ovary, fallopian tube and 
broad ligament 

Other and unspecified female 
genital organs 

Prostate 
Testis 
Other and unspecified male 

genital organs 
Bladder 
Other and unspecified urinary 

organs (incl. kidney) 
Eye 

ICD9 

Nasal cavities, middle ear and 
accesscry sinuses 

Larynx 
Trachea, bronchus, lung 

Pleura 

Thymus, heart and 
mediastinum 

Other and ill-defined sites 
within the respiratory 
system and intrathoracic 
organs 

Bone and articular cartilage 
Connective and other soft 

tissues 
Melanoma of skin3 
Other malignant3 neoplasms 

of skin 
Breast - female 
Breast - male 

- 
Uterus, part unspecified 

Cervix uteri 
Chorionepithelioma 

Body of uterus 

Ovary and other uterine 
adnexa 

Other and unspecified female 
genital organs 

Prostate 
Testis 
Other and unspecified male 

genital organs 
Bladder 
Kidney and other and 

unspecified urinary organs 
Eye 

Excludes skin of genital organs. ICD7 and ICD8 also exclude skin of breast (coded to breast). 
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Code ICD7 

191 Other malignant neoplasms 
of ski n3 

192 Eye 

193 Brain and other parts of 
nervous system 

194 Thyroid 
195 Other endocrine glands 
196 Bone 

197 Connective tissue 

199 Other and unspecified sites 

200 Lymphosarcoma and 
reticulosarcoma 

201 Hodgkin's disease 
202 Other forms of lymphoma 

203 Multiple myeloma 

204 Leukaemia and aleukaemia 
205 Mycosis fungoides4 
206 - 
207 - 

Brain 

Other parts of nervous system 

Thyroid 

Other endocrine glands 
Ill-defined sites 
Secondary and unspecified 

malignant neoplasms of 
lymph nodes 

Secondary malignant 
neoplasm of respiratory 
and digestive system (incl. 
liver unspecified as primary 
or secondary) 

Other secondary malignant 
neoplasms of other 
specified sites 

Malignant neoplasm without 
specification of site 

Lymphosarcoma and 
reticulum cell sarcoma 

Hodgkin's disease 
Other lymphoid tissue 

Multiple myeloma 

Lymphatic leukaemia 
Myeloid leukaemia 
Monocytic leukaemia 
Other and unspecified 

leukaemia 
Polycythemia vera5 

Brain 

Other and unspecified parts of 
nervous system 

Thyroid 

Other endocrine glands 
Other and ill-defined sites 
Secondary and unspecified 

malignant neoplasms of 
lymph nodes 

Secondary malignant 
neoplasm of respiratory and 
digestive system 

Secondary malignant 
neoplasms of other specified 
sites 

Malignant neoplasm without 
specification of site 

Lymphosarcoma and 
reticulosarcoma . 

Hodgkin's disease 
Other lymphoid and histiocytic 

tissue 
Multiple myeloma and 

immunoproliferative 
neoplasm 

Lymphoid leukaemia 
Myeloid leukaemia 
Monocytic leukaemia 
Other specified leukaemia 

Leukaemia of unspecified cell 
t Y  Pe 
- 

4Mycosis fungoides is coded under 202 (as 202.1) in ICD8 and ICD9. 
Polycythemia Vera and myelofibrosis are not coded as malignant neoplasms in ICD7 and ICD9. 

Note 
1. Uterus unspecified is coded with corpus uteri in iCD8, but given a separate 3-digit rubric in ICD7 and ICD9. 
2. Other and unspecified urinary organs are coded with bladder in ICD7, but with kidney in ICD8 and ICD9. 
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U.S. NATIONAL DEATH RATES: WHITE MALES (DEATHSIPERSON- 
YEAR X1000) 

(a) All causes of death 

Age 
group 

0 
5 

10 
15 
20 
25 
30 
3 5 
40 
45 
50 
5 5 
60 
65 
70 
7 5 
80 
8 5 
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(b) All malignant neoplasms 
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(c) Cancer of respiratory system 
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(d) All diseases of circulatory system 
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ALGO-RITHM FOR EXACT CALCULATION OF PERSON- 
YEARS1 

We denote by t a multivariate time variable, for example, t ,  = age, t, = calendar time 
and t, = number of years since first exposure to a given risk factor. Entry into the study 
occurs at t = e afid exit at t = e + f 1, where 1 is a vector of 1s and f is the total duration 
of follow-up. Thus, if a subject entered at age 26.3 years on 1 January 1950 having 
been initially exposed some 4.9 years earlier, and was followed for 23.7 years, we 
would have entry at e = (26.3, 1950.0,4.9) and exit at (50.0,1973.7,28.6). 

To start the algorithm, we set t = e and determine the cell, denoted by a vector I of 
indices for each time variable, in which t lies. The designation I = (3,1,2) in the 
example would mean that entry into the study occurred in the third age group, first 
calendar period, and second category of duration since initial exposure. The procedure 
is then as follows: 

A If u, are the upper 'boundaries of the cell indexed by I (e.g., 30 years of age, 
calendar year 1955 and ten years since initial exposure), determine the contribution 
of the individual to this cell, C,, as the smallest element of the vector u, - t or as 
the remaining follow-up time, if even smaller. 

B Set t = t + C,l. 
C Add C, to cell 1 of the person-years cross-classification. 
D Check each element of t against the cell boundaries. For each element such that ti 

is at the upper boundary, increase the corresponding element of I by 1. 
E ,Repeat until all follow-up is accounted for. 

In the above example, the contributions to the first cell I = (3,1,2) would be 
3.7 = min(30-26.3,1955-1950.0,lO-4.9), t would change to (30,1953.7,8.6) and the 
next cell to consider would be I = (4,1,2). 
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GROUPED DATA FROM THE MONTANA SMELTER 
WORKERS STUDY USED IN CHAPTERS 2-4 

Age Calendar Period Arsenic Person- Numbers of deaths from: 
group period ofhire exposure years 

All Respiratory All Circulatory 
causes cancer cancer disease 

1 1 1 1 3075.27 15 2 5 5 
1 1 1 2 485.83 2 0 0 0 
1 1 1 3 478.18 5 0 1 2 
1 1 1 4 337.29 5 0 0 1 
1 1 2 1 3981.61 27 2 2 10 
1 1 2 2 656.06 5 1 2 1 
1 1 2 3 190.34 2 0 0 1 
1 1 2 4 12.46 1 0 0 1 
1 2 1 1 936.75 4 0 1 2 
1 2 1 2 194.58 1 1 1 0 
1 2 1 3 164.87 2 1 1 0 
1 2 1 4 121.00 0 0 0 0 
1 2 2 1 10740.68 8 5 2 4 32 
1 2 2 2 1696.77 9 1 2 4 
1 2 2 3 870.52 14 0 1 6 
1 2 2 4 224.00 0 0 0 0 
1 3 2 1 12451.29 101 7 13 38 
1 3 2 2 251 1.97 15 0 2 5 
1 3 2 3 868.35 12 0 2 5 
1 3 2 4 291.78 4 0 1 2 
1 4 2 1 7151.03 39 1 4 18 
1 4 2 2 1341.63 18 3 3 8 
1 4 2 3 419.81 6 0 1 2 
1 4 2 4 160.61 2 0 0 1 
2 1 1 1 2849.76 5 1 2 8 2 1 
2 1 1 2 390.45 5 0 1 4 
2 1 1 3 333.04 3 1 2 1 
2 1 1 4 626.72 14 4 5 5 
2 1 2 1 1912.89 30 4 7 15 
2 1 2 2 202.69 4 0 0 1 
2 1 2 3 90.50 3 0 0 3 
2 1 2 4 14.96 1 0 0 1 
2 2 1 1 2195.59 49 3 9 18 
2 2 1 2 346.17 14 2 2 7 
2 2 1 3 287.79 8 1 1 4 
2 2 1 4 349.53 11 3 4 6 
2 2 2 1 5624.50 109 5 15 4 8 
2 2 2 2 933.45 26 7 9 9 
2 2 2 3 410.94 8 1 4 0 
2 2 2 4 75.41 6 2 2 1 
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Appendix V: Grouped Data from Montana Study (cont'd) 
Age Calendar Period Arsenic Person- Numbers of deaths from: 
group period of hire exposure years 

All Respiratory All Circulatory 
causes cancer cancer disease 
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Appendix V: Grouped Data from Montana Study (cont'd) 
Age Calendar Period Arsenic Person- Numbers of deaths from: 
group period of hire exposure years 

All Respiratory All Circulatory 
causes cancer cancer disease 
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GROUPED DATA ON NASAL CANCER DEATHS AMONG 
WELSH NICKEL WORKERS 

Appendices VI and VII present grouped data derived from the Welsh nickel refinery 
cancer mortality study. Person-years (PY) and observed deaths were summed for all 
persons (N) with positive person-year contribution to each cell cross-classified by age 
first employed (AFE), year first employed (YFE), exposure index (EXP), and time 
since first employed (TFE). Expected deaths were based on national death rates for 
England and Wales in five-year age and calendar year strata (see Appendix IX). Of 400 
possible cells in the four-way classification (Appendix VII), 242 had positive person- 
year contributions. The three-way classification (Appendix VI) was obtained by 
collapsing the four-way data over the EXP dimension. Of 80 possible cells in the 
three-way classification 72 had positive person-year contributions. 

The categories of the four classification variables are: 

AFE YFE EXP TFE 
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NASAL SINUS CANCER MORTALITY IN WELSH NICKEL 
REFINERY WORKERS: SUMMARY DATA FOR 

THREE-WAY CLASSIFICATION 

Nasal 
AFE Y E  TFE cancer Person-years 

deaths 

Nasal 
AFE Y E  TFE cancer Person-years 

deaths 
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Appendix VI: Three-way Classification of Welsh Data (cont'd) 

Nasal Nasal 
AFE YFE TFE cancer Person-years AFE YFE TFE cancer Person-years 

deaths deaths 
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LUNG AND NASAL SINUS CANCER MORTALITY IN WELSH 
NICKEL REFINERY WORKERS: SUMMARY DATA FOR 

FOUR-WAY CLASSIFICATION 

Observed deaths Expected deaths 
AFE YFE EXP TFE N PY Lung Nasal All Lung Nasal All 

cancer cancer causes cancer cancer causes 
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Appendix VII: Four-way Classification of Welsh Data (cont'd) 
Observed deaths Expected deaths 

AFE YFE EXP TFE N PY Lung Nasal All Lung Nasal All 
cancer cancer causes cancer cancer causes 
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Appendix VII: Four-way Classification of Welsh Data (cont'd) 
Observed deaths Expected deaths 

AFE YFE EXP TFE N PY Lung Nasal All Lung Nasal All 
cancer cancer causes cancer cancer causes 
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Appendix W: Four-way Classification of Welsh Data (cont'd) 
Observed deaths Expected deaths 

AFE YFE EXP TFE N PY Lung Nasal All Lung Nasal All 
cancer cancer causes cancer cancer causes 
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Appendix VII: Four-way Classification of Welsh Data (cont'd) 
Observed deaths Expected deaths 

AFE YFE EXP TFE N PY Lung Nasal All Lung Nasal All 
cancer cancer causes cancer cancer causes 



374 BRESLOW AND DAY 

Appendix VII: Four-way Classification of Welsh Data (cont'd) 
Observed deaths Expected deaths 

AFE YFE E X .  TFE N PY Lung Nasal All Lung Nasal All 
cancer cancer causes cancer cancer causes 
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CONTINUOUS DATA (ORIGINAL RECORDS) 
FOR 679 WELSH NICKEL REFINERY WORKERS 

ICD Exposure Date of Age at first Age at start of Age at death or 
ID code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

ID code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

ID code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

1 U  
code level birth employment follow-up withdrawal 



APPENDIX Vlll 

Appendix VLII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

LU 
code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) - ICD Exposure Date of Age at first Age at start of Age at death or 
W 

code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

ID code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

ID code level birth employment follow-up withdraw a1 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

ID code level birth employment follow-ur, withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of 

ID code level birth employment follow-up 
 eat death or 
withdrawal 
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Appendix VIII: Orieinal Records from Welsh Study (cont'd) 
- 

,, ICD Exposure Date of Age at first Age at start of Age at death or 
1 U  

code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

ID code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

ID code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

ID code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
~ ~ 

ICD Exposure Date of Age at first Age at start of Age at death or 
ID code level birth employment follow-up withdrawal 
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Appendix VIII: Original Records from Welsh Study (cont'd) 
ICD Exposure Date of Age at first Age at start of Age at death or 

ID code level birth employment follow-up withdrawal 
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ENGLAND AND WALES: AGE- AND 
YEAR-SPECIFIC DEATH RATES 

FROM NASAL SINUS AND LUNG 
CANCER AND FROM ALL CAUSES 

Calendar period Age group Death rate (per 1 000 000 per year) 
(years) 

Lung cancer Nasal cancer All causes 
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Appendix IX (cont'd) 
Calendar period Age group Death rate (per 1 06ti 000 per year) 

Lung cancer Nasal cancer All causes 
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Appendix IX (cont'd) 
Calendar period Age group Death rate (per 1 000 000 per year) 

Lung cancer Nasal cancer All causes 
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Appendix IX (cont'd) 
Calendar period Age group Death rate (per 1 000 000 per year) 

(years) 
Lung cancer Nasal cancer All causes 



SUBJECT INDEX TO VOLUMES I AND I1 

Additive effect, 1-55 
Additive models, 1.55,1.58,11.122-31 

choice between additive and multiplicative 
models, 11.142-46 

Age-incidence curves, 11.55 
Age-specific rates, 11.49-51,II. 193-95 
Age-specific ratios, II.61,11.72 
Age standardization, 1.254 

of mortality rates, 11.51-70 
Age-standardized death rates, 11.91 
Age-standardized mortality ratios. See 

Standardized mortality ratios 
(SMRs) 

Agelstratum-specific rates, 11-61 
Age-time specific comparisons, 11.48 
Alcohol consumption 

in relation to oesophageal cancer, 1.216, 
1.218-20,1.223-24,1.227-35 

in relation to oral cancer, 1.66,1.67,1.86, 
1.109,I.llO 

Alternative explanation of observed 
relationships, 1.89 

AMFIT program, 11.175 
Analysis of variance, multiplicative model 

for SMRs, 11.158 
Animal models, 1.236 
Ankylosing spondylitis, irradiation for, 1.62 
Annual incidence rates, 1.43,1.47 
Annitage-Doll model, 11.256,11.264 

see also Multistage models of 
carcinogenesis 

Asbestos exposure, 1.21,1.90,11.31-34, 
II.38,11.103 

and lung cancer, 11.242-44, 11.262 
and mesothelioma, 11.237-39,11.261 

combined with cigarette smoking, 1.66-68, 
11.352-53 

Association. See Disease association 
Association strength, 1.88-89 
Asymptotic normality, 11.133-35 
Atomic bomb survivors, 1.62,11.22 

life-span study, 11.340-44 
Attained significance level, 1.128 
Attributable risk, 1.73-78,II.21 

for exposed persons, 1.74 
population risk, 1.74 
relative attributable risk, I. ,76 

Background rates 
incorporation into multiplicative model, 

11.151-53 
non-parametric estimation of, 

11.192-99 
Bandwidth, choice of kernel estimates, 

11.193-95 
Benzene exposure, risk of leukaemia, 1.87 
Benzidine exposure and bladder cancer, 

11.252 
Benzo[a]pyrene, and incidence of skin 

tumours, 1.237 
Bermuda Case-Control Symposium, I. 19 
Bernoulli distribution, 11.132 
Biases, 1.22,1.35,1.73, 1.84-85,1.89, I. 105, 

1.113,11.9,11.16,11.73 
arising from unconditional analysis of 

matched data, 1.249-51 
due to errors of measurement, 11.41-42 
see also Recall bias; Selection bias 

Binomial coefficient, definition, I. 125 
Binomial distribution, definition, I. 125 
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Biological monitoring, 11.20 
Birth cohort analysis, 1.48 
Bladder cancer, 11.21, 11.30 

and benzidine exposure, 11.252 
in chemical industry, 11.11 

Bone tumours, and radiation exposure, 
11.249-50 

Boston Drug Surveillance Program, 1.22, 
1.115 

Breast cancer, 11.21 
age at first birth, 1.64-66,1.77,1.86 
age-specific incidence rates, 1.49,1.50, 

1.59,1.60,11.129 
and radiation exposure, 11.247-49,11.262 
bilateral, 1.87 
cohort analysis of Icelandic data, 11.126-31 
comparison of indirect standardization and 

multiplicative model fitting, 11.130 
example of negative confounding, 1.93-94 
influence of reproductive factors, 1.66 
irradiation-induced, I. 62 
relative risks for, 1.92 
reproductive experience in, I. 17,1.66 

Breast disease, benign, 11.187 
British doctors study, II.27,11.28, 11.101, 

11.163-65,II. 168-70, 11.236, 
11.336-39 

Calendar period-specific rates, 11.49-5 1 
Calendar time, 1.43 
Carcinogenesis, multistage models of, 

11.256-60 
Case-control sampling, II.205,11.289-302 

see also Risk set sampling 
Case-control studies 

applicability, 1.21 
as related to cohort studies, 11.3-22, 

11.35-36,11.42,11.44 
chi-squared test statistic 

1 D.F. test for trend, 1.147-50 
combination of 2 X K table, 1.149 
goodness-of-fit, 1.209-10 
in logistic regression, 1.208-10 

goodness-of-fit, 1.208,1.222,1.273 
matched pairs (McNemar test), I. 165, 

1.184 
for homogeneity of relative risk, 

1.166-69,1.185 
1 D.F. test for trend, 1.184 

matched samples (1 : M), 1.171,1.177 
for homogeneity and trend in relative 

risk, 1.173-76 
series of 2 x 2 tables (Mantel-Haenszel 

statistic), 1.138 
for homogeneity of relative risk, 

1.142,1.143 
for trend in relative risk, I. 142 

series of 2 x K tables, 1.149 
trend test, 1.149 

summary chi-squared for combination of 
2 x 2 table (Mantel-Haenszel 
statistic), 1.138 

test of homogeneity, 1.166-69 
2 x 2 table, 1.131-32 
2 x K table, I. 147 

contradictory results, I. 19 
definition, I. 14-16 
design considerations, 11.272, 11.289-302 

choice of case, 1.23-25 
choice of control, 1.25-28 

efficiency of, 1.21 
future role of, I. 18 
general considerations, I. 14-40 
history, 1.17 
limitations, 1.22 
low cost of, 1.21 
major strengths of, 1.20-22 
objectives of, I. 17, I. 19-20 
planning, I .23-32 
present significance, I. 17-19 
status of cases, 1.24 
unmatched design considerations, 

11.289-94, 11.302-4 
Causality, 1.84-85 

criteria, 1.36-37,1.86-90 
evidence of, 1.90 

Chi-squared test statistic. See under Case- 
control studies; Cohort studies 

Childhood cancers, 1.239-42 
Chronological age, 1.43 
Cigarette smoking. See Tobacco 

consumption 
Classification errors, I. 114 
Coding of disease, 11.30 
Coffee drinking, lack of dose response for 

bladder cancer, 1.86, 
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Cohort studies 
chi-squared test statistic, 11.68, 11.94, 

11.137 
comparison of two SMRs, 11.94 
for SMR, II.68,11.69 
goodness-of-fit test for grouped data, 

11.129 
heterogeneity of SMR, 11.96 
1 d.f. test for trend of SMR, 11.96 
summary test for equality of relative 

risk, 11.108, 11.113 
test for heterogeneity of relative risk, 

11.112 
test for trend in relative risk, 11.112 

definition, 11.2 
design and execution, 11.22 
design considerations, 11.271-88 
further information from, 11.28-29 
general considerations, 11.2-46 
historical, II.2,II.S-11, 11.19,11.21, 11.32, 

11.33, 11.35, 11.37, 11.42 
identification of cancer cases, 11.28 
implementation, 11.22-36 
interpretation, 11.36-45 
limitations of, 11.20-22 
present significance of, 11.11-20 
problems in interpretation of, 11.39-45 
prospective, 11.2, 11.20, 11.33, 11.35, 11.37 
retrospective. See historical (above) 
sample size for 

comparison with external standard, 
2.273-79 

comparison with internal control group, 
2.279-85 

specific strengths of, 2.11-20 
Combined exposures, I. 66-68 

see ako Joint effects 
Comparative mortality figure (CMF), 11.48, 

11.61-63, 11.90, 11.125, 11.126 
instability of, 11.63 
standard error of, 11-64 
versus SMR, 11.72 

Comparison groups, choice of, 11.33-34, 
11.39-4O,II.61 

Comparisons with several disease or control 
groups, I. 111-12 

Composite variables, I. 105 
Computer programs, II.175,II. 192,11.206 

AMFIT, 11.175 

GLIM. See GLIM 
LOGODDS, 1.322-38, 11.189 
MATCH, 1.297-306 
PECAN, 11.206 

Conditional analysis, 1.249 
Conditional distribution 

for 2 x 2 table, 1.125 
for series of 2 x 2 tables, 1.138 

Conditional likelihood, I.204., 1.209,1.248, 
1.251,1.253,1.255,1.270 

Conditional logistic regression analysis for 
matched sets, 1.248-79, 1.297-306 

Conditional maximum likelihood estimate 
for 2 x 2 table, 1.127 

Confidence coefficient, definition, I. 128 
Confidence intervals, I. 134, I. 165-67, I. 182 

definition, I. 128-29 
for common odds ratio in series of 2 X 2 

tables, 1.141-42 
for odds ratio in 2 x 2 table 

Cornfield, I. 133-34 
exact, I. 129 
logit, 1.134 
test based, 1.134 

for ratio of SMR, 11.95 
for relative risk in matched pairs, 1.163-67 
for relative risk in matched sets (l:M), 

I. 172-76,1.182 
for the SMR, 11.69-71 
logistic regression parameters. See 

Covariance matrix of logistic 
regression parameters 

test based, 1.134, 1.135 
see ako Standard error of Mantel-Haenszel 

estimate 
Confounding, residual, I. 100, I. 101 
Confounding effects, 1.84-85, 1.93-108, 11.87 

and misclassification, I. 106 
control of, 1.29-30,1.36, I. 11 1 , I .  136-56, 

I. 162, I. 166 
effect of study design on, I. 101-3 
negative, 1.95 
of nuisance factors, 1.225-26 
on sample size requirements, 11.304-6 
statistical aspects of, 1.94-97 
see also Logistic model and logistic 

regression; Standardized mortality 
ratios (SMRs), bias in the ratio of 
Stratification 
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Confounding risk ratio, 1.76, 1.96-97, 
1.99-101, 11.33 

Confounding score index, I. 101 
Conjugated oestrogen dose, I. 178 
Continuity correction, 1.131-34, 11.296, 

11.301 
Continuous data, fitting models to 

11.17'8-229 
Continuous data analysis, 1.227-33 

choice of basic time variable, 11.180-81 
comparison with grouped data analysis, 

11.211-12 
construction of exposure functions, 

11.181-82 
external standard rates, 11.183-84 
fundamentals of, 11.179-84 
in matched studies, 1.265-68 
model equations, 11.182-83 
of Montana smelter workers, 11.206-18 
of South Wales nickel refiners - nasal sinus 

cancer, 11.218-29 
Continuous variables, 1.92 
Contour plot of deviances, 11.169 
Controls 

choice of control series, 1-25-28 
selection procedure, 11.205-6 
see also Case-control studies; Matching; 

Risk set sampling 
Cornfield's limits, I. 133-34 
Coronary disease among British male 

doctors, 11.112, 11.145, 11.146 
Corrected chi-squared statistic, 1.131 
Covariance matrix of logistic regression 

parameters, 1.207 
Cross-classification. See Stratification 
Cross-sectional analysis of incidence rates, 

1.48 
Cross-tabulation. See Stratification 
Cumulative background rates, estimation of, 

11.192-97, 11.204-5 
Cumulative incidence rates, 1.49-53 
Cumulative rate, 11.57-58 

standard error, 11.58-61 
Cumulative ratio, kernel estimation of, 

II. 193-95 
Cumulative relative rates, 11.204-5 
Cumulative standardized mortality ratio, 

11.207 

Data acquisition, 11.36 
Data collection, 11.35, 11.42 
Data points, influence of, 11.139-40 
Death rates, US national, 11.358-61 
Denominator information, 11.26-28 
Design considerations. See under Case- 

control studies; Cohort studies; 
Matching 

Deviances 
contour plot of, 11.169 
see also Likelihood inference 

Dichotomous exposure 
l:M matching, 1.169-76 
in unmatched studies, I. 124-46 
matched pairs, I. 164-76 
variable number of controls, 1.176-82 

Dichotomous variables, 1.91,1.94-97 
Directly standardized rate, 1.50, 11.52-57, 

11.89-91 
standard error, 11.58-61 
see also Comparative mortality figure 

(CMF) 
Disease association models, 1.53-59 
Disease occurrence, measures of, 1.42-47 
Dose metameter selection, 11.98-99 
Dose-response analysis, 11.105, 11.115-18 

see also Logistic model and logistic 
regression; Regression analysis; 
Trend tests 

Dose-response relationship, 1.86, 1.88, 11.37, 
11.41, 11.42, 11.82, 11.83, 11.88, 
II.97,11.96, 11.159,11.232 

multistage models, 2.262-63 
see also Joint effects 

Dose-time relationships, 11.233-55 
Dose-time-response relationships, 11.120 
Dose transformations, 11.159 
Dummy variables for logistic regression 

models, 1.196, 1.214 

Ecological studies, 11.4 
Effect modification. See Interaction 

(modifying) effects 
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Efficiency calculations for matched designs, 
11.302-4 

Empirical odds ratio, I. 127 
Endometrial cancer, I .24,1.29, 1.90, I. 104, 

1.265 
Los Angeles study of, I. 162-63, I. 185, 

1.253,1.255, 1.258,1.260, 1.261, 
1.263, 1;264,1.266, 1.290-96 

Endometrial hyperplasia, 1.30 
Epithelial tumours, age-specific rates and 

latent period, 1.60, 1.62, 1.89 
Errors of classification and of measurement, 

1.114,11.41-42, 11.265-66 
generating confounding, I. 106 

Estimation of odds ratio 
combination of 2 x 2 table 

logit estimate, I. 139 
Mantel-Haenszel estimate, I. 140, I. 141 
maximum likelihood estimate, I. 140 

2 x 2 table 
asymptotic maximum likelihood, 1.130 
exact conditional maximum likelihood, 

I. 124 
see also Logistic regression 

Excess mortality ratio (EMR), 11.174, 11.175, 
11.268 

Excess risk, 1.55,1.58,1.64,1.84,11.45 
Excess risk model 

fitting to grouped data, 11.171-76 
see also Additive models 

Exponential distribution, 11.132 
Exponential survival times, 11.131-32 
Exposure functions, 11.181-82 
Exposure index, 11.172-73 
Exposure information, 11.30-33,11.37 
Exposure probability, 1.71 
Exposure variables, lagging of, II.48,11.87 
External standard rates, 11.212-14 
Extra Poisson variability, 11.99-100 

Familial risk, 1.87 
Fisher's exact test, 1.128, 1.129, 1.133 
Fitted values in 2 x 2 table, 1.130 
Follow-up losses, 11.40-41,II.49 
Follow-up mechanisms, 11.17, 11-25-29 
Follow-up period, 11.288-89 

Follow-up schema, 11.50 
Force of morbidity, 1.45 
Force of mortality, 1.45 
Forerunners of disease, 11.44 

Gall-bladder disease, 1.22, I. 168, 1.254-59, 
1.262,1.264,1.265 

Gastric cancer, age-specific incidence rates, 
1.62 

GLIM computer program, 1.206,1.208, 
1.214,1.253, II.128,II. 136-37, 
11.139, 11.141-143, 11.160, 11.162, 
11.163,11.167, 11.174, 11.175 

Global statistic for homogeneity test, I. 142 
Global test, 1.153 
Goodness-of-fit, 1.142,11.161, 11.190, 11.199 

analysis of residuals, 11.138-39, 11.144-46 
in logistic regression, 1.208,1.222, 1.273 
influential data points, 11.139-40, 

11.144-46 
multiplicative models, 11.148, 11.149 
statistics, 11.141, 11.144 
summary of measures of, 11.137-38 
see also case-control studies, chi-squared 

test statistic; Cohort studies, chi- 
squared test statistic 

Greenwood's formula, 11.192 
Group-matching, I. 122 
Grouped data, fitting models to, 11.120-76 
Grouped data analysis 

case-control studies, I. 122-59 
goodness-of-fit in logistic regression, 

1.208,1.222,1.273 
Ille-et-Vilaine study of oesophageal 

cancer, 1.281-83 
Oxford Childhood Cancer Survey, 

I .284-89 
qualitative analysis of, 1.213-19 
quantitative analysis of, 1.221-24 

cohort studies, 11.106-15 
comparison with continuous data 

analysis, 11.211-12 
conservatism of indirect standardization, 

11.114-15 
extensions to K > 2 exposure classes, 

11.113-114 
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Grouped data analysis--contd. 
cohort studies--contd. 

heterogeneity of relative risk, 11.110- 13 
Mantel-Haenszel estimate, 11.109-13 
Montana cohort, 11.146-50,II. 155-59 
restrictions on, 11.178 
summary test of significance, 11.108 
two dose levels, exposed versus 

unexposed, 11.107-8 
maximum likelihood estimate, 11.108-13 

Hat matrix in residual analysis, 11.138-40 
Hazard rate, 1.45 
Hazards, proportional, 1.20 1 
Healthy worker effect, II.17,11.39-40,II.87, 

11.98 
Heterogeneity, 11.75-76 

see also Case-control studies, chi-squared 
test statistic; Cohort studies, chi- 
squared statistic 

Historical cohort studies, 11.2, 11.19 
HLA antigen A2 and leukaemia, association 

with survival, 1.25 
HLA antigens and multiple comparison, 

1.115 
Hodgkin7s disease and tonsillectomy, I. 16, 

1.31 

Homogeneity of relative risk 
in .matched pairs, I. 166-67 
in matched sets (l:M), I. 173-74 
in series of 2 x 2 tables, I.137,1.142-43 
tests for homogeneity, see under Case- 

control studies; Cohort studies 
Homogeneity test, global statistic for, I. 142 
Hypergeometric distribution 

central, definition, I. 127 
K-dimensional, I. 147 
non-central, definition, I. 127 

Hypertension, I. 168, I. 169,1.254-59 

Ille-et-Vilaine study of oesophageal cancer, 
I. 122-24, I. 162,1.210,1.213-33, 
I.238,1.281-83 

Implementation 
in case-control studies, 1.32-35 

in cohort studies, 11.22-36 
Incidence cohorts, 11.25 
Incidence rates, 1.43,1.66,1.71 

age-specific, 1.44, 1.47-48, 1.59-61 
calculation of, 1.44 
cumulative, 1.49-53 
directly standardized, 1.50 
estimation of, 1.45 
logarithmic transformation of, 1.57 
overall, 1.76 
time-specific, 1.47-48 
variations in, 1.55 

Indicator variables. See Dummy variables 
Indirect standardization, 11.48 

see also Standardized mortality ratios 
(SMRs) 

Influence of individual data points, 
11.139-40, 11.144-46 

Information matrix, 1.207 
Initial treatment of data, 1.90-93 
Instantaneous rate, 1.45 
Insulation workers, 2.103 
Interaction (modifying) effects, I. 108-1 1, 

1.167,II.llO-13 
definition of, 1.108-11 
effect on sample size requirement and 

matching, 11.308- 10 
in conditional lbgit analysis, 1.262-68, 

1.273 
in logistic model 

definition of, I. 196-200 
test for, 1.221-24 

in series of 2 x 2 tables, 1.238-42 
negative, 1.196 
see also Case-control studies; Cohort 

studies 
Interaction parameter 

in logistic regression, I. 196 
Internally standardized mortality ratios, 

11.103-6 
International Classification of Diseases 

(ICD), II.30711.355-57 
Interpretation, basic considerations, 1.35-37, 

I. 112-15 
Interviews, 1.33-34 

questionnaires, 1.34 
Iran, oesophageal cancer in Caspian littoral 

of, I.275,1.276 
Irradiation 

obstetric, and associated cancer risk, 
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1.239-42 
risk of cancer following, 1.62-63 

Ischaemic heart disease, and cigarette 
smoking, 1.68 

Joint distribution, 1.99 
Joint effects of multiple exposures, 1.66-68, 

1.99,1.111, 1.154-56, 1.227, 
11.266-67 

see also Interaction (modifying) effects 

Kernael estimation of cumulative ratio, 
11.193-95 

Lagging of exposure variables, 11.48, 11.87 
Large strata, unconditional logistic 

regression for, I. 192-246 
Latency function, 11.181-82,II.216-17, 

11.264-66 
Latent period, 1.89 
Least-squares analyses, 11.161 
Least-squares linear regression analysis, 

11.99-103 
Leukaemia, and radiation exposure, 

11.244-47 
Likelihood inference: outline of 1.205-10 

likelihood ratio statistic, 1.209 
likelihood ratio test, 1.207 
log-likelihood analysis, 1.206 
log-likelihood function, 1.206,II. 134, 

11.184-92,11.202-3 
see also Partial likelihood 

log-likelihood statistic, 1.206 
log-normal distribution, 11.181 

Log-linear models, definition, 1.57 
Log odds. See Logit transform 
Log relative risks as logistic regression 

parameters, I. 196 
Logistic model and logistic regression, I. 142 

case-control studies, I. 202-5 
general definition of, 1.200-2 

introduction to, I. 193-200 
results of fitting several versions of, 1.212 

Logistic regression model, 11.153-54 
dummy variable for, I. 196,1.214 

Logit confidence limits from combination of 
2 x 2 tables, 1.134 

Logit estimate, I. 139 
Logit limits, I. 141 
Logit transform, I. 194, I. 196 
LOGODDS program listing, 1.322-38, 

11.189 
Longitudinal studies, 11.2 
Los Angeles study of endometrial cancer, 

I. 162-63, I. 185,1.253,1.255,1.258, 
1.260,1.261, 1.263,1.264, 1.266, 
1.290-96 

Losses to follow-up, 11.40-41, 11.49 
Lost-to-follow-up subjects, 11.49 
Lung cancer, 11.38,11.39, 11.43, 11.100, 

11.103 
age- and year-specific death rates, 

11.391-94 
and asbestos exposure, 11.242-44,II.262 
and uranium miners, 11.253-55 
British male doctors, 11.163-65, 11.168, 

11.169,11.170 
in relation to tobacco consumption, 1.17, 

1.55,1.58,1.64, 1.66-69,1.75, 
1.86-93, I. 100, I. 101, I. 104, I. 166, 
I. 193, 11.5-9,II. 15,11.234-36, 
11.261 

combined with asbestos exposure, 
1.66-68 

relative risk of, 11.235 
South Wales nickel refiners, 11.171,11.174, 

II.268,II. 347-48 

McNemar7s test, I. 165 
Mantel test for trend, I. 148 
Mantel-Haenszel analysis, 11.82 

estimate for cohort studies, 11.109-113, 
11.147,11.285 

for case-control studies, I. 138-42, I. 144, 
1.165,1.171,1.172, I. 174,1.177, 
1.179,1.181, 1.192,1.195-96 

test for cohort studies, 11.189 
Mantel-Haenszel statistic, I. 138 
MATCH program listing, I .297-306 
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Matched case-control studies, 11.297 
design 

comparison with unmatched design, 
11.306 

number of controls per case, 11.304 
sample size requirements for 

dichotomous exposure, 11.294-302 
Matched data analysis, I. 162-89 

conditional logistic regression analysis for, 
I. 248-79, I .297-306 

conditional logistic regression, 1.248-79, 
1.297-306 

dichotomous variables 
1:l matching, I. 164-69 
l:M matching, I. 169-76 
variable number of controls, 1.176-82 

polytomous variables, I. 182-87 
Matched designs, efficiency calculations for, 

1.270-76, 11.302-4 
Matched versus unmatched analyses, 

1.102-6,1.249-51,1.270-76 
Matching 

by strata, 1.30-31 
in choice of controls, 1.28-32 
problems associated with, 1.31 

Maximum likelihood estimate (MLE). See 
Estimation of odds ratio; 
Likelihood inference 

Mesothelioma 
and asbestos exposure, 11.237-39,II. 261 
of the pleura, 1.21 

Misclassification, I. 114 
see aho Biases; Errors of classification and 

of measurement 
Misclassification rates, 11.42 

see aho Biases, due to errors of 
measurement 

Missing data, 1.113-14 
Model selection, 11.203-4 

biological basis for, 11.125 
Modelling risk, I. 11 1 
Models, disease association, 1.53-59 
Modifying effect. See Interaction 
Montana smelter workers 

cohort studies, 11.18, 11.23, II.32,11.37, 
11.52,11.53, 11.60,11.78,11.79, 
11.86-99, 11.105, II.114,11.148, 
11.149, II.152,II. 154, 11.206-18, 
II.232,11.349-50 

grouped data analyses, 11.146-50, 
11.155-59, 11.363-65 

multiplicative models, 11.146-50,II.211, 
11.213, 

numbers alive and under observation, 
11.202 

regression analyses, 11.157-59 
respiratory cancer, 11.157, IT. 158 

Mortality, proportional, 11.45-46, 11.76, 
11.115-18 

Mortality rates, 1.43 
age-specific, 1.65 
age standardization of, 11.51-70 
estimation of, 1.45 

Mortality ratios, standardized. See 
Standardized mortality ratios 

Mouth cancer. See Oral cancer 
Multiple comparison, I. 115, 11.43-44 
Multiple exposure levels, I. 189 

matched studies, I. 146-54, I. 182-87 
see aho Logistic model and logistic 

regression 
Multiplicative models, 1.57, 1.58, 1.67, 

IT. 122-31,II. 135-42 
choice between additive and multiplicative 

models, 11.142-46 
comparison with indirect standardization, 

11.125-3 1 
estimating base line rates under, 11.195-99 
fitting of, 11.148 
general form of, 11.136 
goodness-of-fit, 11.148, 11.149 
incorporating external standard rates, 

11.151-53 
Montana smelter workers, 11.146-50, 

II.211,11.213 
nasal sinus cancer in South Wales nickel 

workers, 11.223,11.224, 11.226, 
11.227 

partial likelihood for, 11.185-86 
regression coefficients, 11.158 

Multistage models of carcinogenesis, 
11.256-60 

dose-response relationship, 11,262-63 
interpretation of epidemiological data in 

terms of, 11.261-62 
metameters of dose when dose levels vary, 

11.263-65 
Welsh nickel refinery data, 11.267-70 
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Multivariate analysis. See Logistic model and 
logistic regression 

Multivariate normality, 1.204 

N 

Nasal sinus cancer in South Wales nickel 
refinery workers, II.105,II. 106, 
11.142, 11.172, 11.218-29, 11.268, 
II.367,11.369-74 

age- and year-specific death rates, 
11.391-94 

fitting relative and excess risk models to 
grouped data, 11.171-76 

multiplicative model, 11.223, 11.224, 
11.226,11.227 

see also Continuous data analysis 
Negative confounding, I. 95 
Negative interaction, I. 196 
Negative results, 11.44-45 
Nested hierarchy of models, 1.207 
Nickel workers. See South Wales nickel 

refiners 
Non-central hypergeometric distribution, 

definition, I. 127 
Non-identifiability problem, 11.128 
Non-multiplicative models and partial 

likelihood, 11.191 
Non-oestrogen drug use, 1.262,1.264,1.265 
Non-parametric estimation 

background rates, 11.192-99 
relative mortality functions, 11.197-99 

Normal approximation to exact distribution 
for 2 x 2 table, 1.129 

Nuisance factors, confounding effects of, 
I .225-26 

Nuisance parameters, 1.205 

Obesity and risk of endometrial cancer, 
1.262, 1.265 

Obstetric radiation and associated risk of 
cancer, 1.239-42 

Odds ratio, 1.70,1.73, 1.94-96, 1.99, 1.102, 
1.103,1.106,1.108, I. 130-31,1.135, 
I. 139, I. 140,1.196,1.250-10,1.241, 
1.252 

empirical, I. 172 

equivalence to relative risk, 1.70-72 
estimation of. See Estimation of odds ratio 
test for consistency, I. 185-87 
test for homogeneity, I. 142-46, I. 167 

Oesophageal cancer, 11.36, II.45,II. 159 
among Singapore Chinese, 1.274 
dose-response, 11.263 
Ille-et-Vilaine study of, 1.222-24, I. 162, 

- 1.210,1.213-33,1.238,1.281-83 
in Caspian littoral of Iran, 1.275, 1.276 
in relation to alcohol consumption, 1.216, 

1.218-20,1.223-24,1.227-35 
in relation to tobacco consumption, 1.154, 

1.155,1.217-19,1.221,1.223-24, 
1.227-35, 11.266 

log relative risk, 1.216, 1.217, 1.220, 1.221 
Oestrogen use, 1.24,1.29, 1.90,1.93, 1.104, 

1.254-59,1.262, 1.264,1.265 
Oral cancer in relation to alcohol and 

tobacco consumption, 1.66,1.67, 
1.86,1.109, 1.110 

Oral contraceptives, 1.22 
Overmatching, I. 104-6 
Oxford Childhood Cancer Survey, 1.239-42, 

1.270, 1.284-89, 1.322 

p-values as measure of degree of evidence, 
I. 128 

Partial likelihood, 11.186,11.188, 11.189 
for multiplicative models, 11.185-86 

Partial likelihood analysis, II.200,11.212-14, 
11.212 

PECAN program, 11.206 
Person-years, algorithm for exact calculation, 

11.362 
Person-years allocation, 11.49-51,11.83, 

11.85-86, 11.88 
to time-dependent exposure categories, 

11.82-86 
Point prevalence 1.42 
Poisson distribution, II.68,11.69,11.70, 

11.274 
Poisson models 

and the Poisson assumption, 11.131-35 
for grouped data, 11.185 

Poisson rates, fitting general models to, 
11.160-67 
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Poisson variability, 11-99, 11.100 
Poolability of data. See Matched data 

analysis 
Population attributable risk, 1.74, 11.21 
Population controls, 1.276 
Portsmouth (USA) Naval Shipyard workers, 

11.99 
Positive confounding, 1.95, I. 101 
Positive interaction, I. 196 
Potential confounding, I. 107 
Power considerations, 11.34-35 

see also Case-control studies, design 
considerations; Cohort studies, 
design considerations 

Power to detect interaction, 11.308-10 
Prevalence, point, 1.42 
Prevalence cohorts, 11.25 
Proportional hazards, I. 201 
Proportional mortality, 11.45-46,11.76, 

11.115-18 
analysis 11.153-55, 11.216 
incorporating standard rates, 11.154-55 
risk functions for, 11.168-71 

Proportionality assumption, 11.93 
Prospective cohort studies, 11.2 

Questionnaires, I .34 
information management, I. 34-35 

Radiation exposure 
and bone tumours, 11.249-50 
and breast cancer, 11.247-49,11.262 
and cigarette smoking, 11.254 
and leukaemia, 11.244-47 

Rate of occurrence, 1.43 
Rates and rate standardization, 11.48-79 

cumulative rate, 11.57-58 
directly standardized rate, 11.52-57 
standard error of cumulative or directly 

standardized rate, 11.58-61 
standardized to world population, 11.55-57 
summary measures, 11.51 
see also Incidence rates; Mortality rate; 

Standardized mortality ratios 
(SMRs) 

Recall bias, 1.22,1.35, 1.84-85, 1.113, 11.16 

Regression adjustment for confounders, 
1.225-26 

Regression analysis, 1.232, 11.91, 11.99, 
11.100 

Montana smelter workers, 11.157-59 
see also Logistic model and logistic 

regression 
Regression coefficients, 1.197, I.215,1.218, 

1.224,1.274, 11.140, 11.142 
interpretation of, 1.233-36 
multiplicative model, 11.158 
standardized, 1.208 

Regression diagnostics, 11.138-42, 11.146, 
II.l61,11.203-4 

Regression models, 1.214, I.215,1.222, 1.240 
Regression variables, I. 239, I .254-59 
Relative attributable risk (RAR), 1.76 
Relative mortality functions, nonparametric 

estimation, 11.197-99 
Relative mortality index (RMI), 11.75 
Relative risk, 1.57-67, 1.69-73,1.77,1.84, 

1.87-89, I. 110, I. 113,II. 106-14, 
11.142 

additive, 11.160 
see also Odds ratio 

Relative risk estimation, 11.94-95,II. 108-10, 
11.147 

general models of, 11.159-71 
incorporating external standard rates, 

11.167 
see also Estimation of odds ratio; Mantel- 

Haenszel analysis 
Relative standardized mortality ratio 

(RSMR), 11.77-78 
Reproductive factors in breast cancer, 1.66 
Residual analysis, Hat matrix in, 11.138-40 
Residual confounding, I. 100, I. 101 
Residuals, standardized, 1.213 
Respiratory cancer, II.60,II. 105,11.207 

standard death rates, 11.88 
standard proportion of deaths due to, 

11.155 
Retirement, 11.27 
Risk, 1.51, 1.53 

see also Excess risk; Relative risk 
Risk-dose-time relationship, modelling, 

11.232-70 
Risk factors, 1.25, 1.53,1.55,1.56, I.58,1.66, 

1.76,1.123, 1.128 
binary, 1.263 
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constellation of, I. 199 
joint effects of, 1.154-56 
more than two levels, I. 198 

Risk ratio. See Relative risk; Odds ratio 
Risk set sampling, 11.199-206,11.214-16, 

11.302-4 
Risk specificity 

disease subgroups, 1.86-87 
exposure subcategories, 1.87 

Risk variables, 1.123 
transforming continuous, 1.236-38 

Rule of 5,1.139 

Sample size. See Case-control studies, design 
considerations; Cohort studies, 
design considerations; Confounding 
effects; Interaction; Matching 

Sampling requirements, 1.72 
Score statistic, 1.207 
Second order interaction, I. 199 
Selection bias, 1.22,1.35,1.85,1.89, I. 113, 

11.17, 11.49 
Serial measurements, 11.20 
Significance level 

attained, 1.218 
two-sided, 1.133 

Significance tests, I. 127, I. 131-33 
Single-tail test, 1.133 
Skin cancer, case-control study of, 1.200 
Skin tumours, 1.236 

estimated cumulative incidence rates, 1.237 
in mice, 1.46,1.53,1.54 

South Wales nickel refiners, 11.23-25,11.32, 
11.37, II.142,II. 143,11.218-29, 
11.233 

continuous data 11.374-90 
lung cancer in 11.171, 11.174, 11.268, 

11.347-48 
mortality experiences, 11.171 
multistage models, 11.267-70 
nasal sinus cancer, 11.268,11.365-67, 

11.369-74 
Spurious associations, I. 89 
Standard error 

of CMF, 2.64 
of Mantel-Haenszel estimate, 11,109 
of SMR, 11.67 

Standard populations, 11.54-55 
Standardized mortality ratios (SMRs), 11.49, 

11.65-68, 11.83, 11.88,11.125,11.126, 
11.128,11.151,11.152, II.157,11.158, 
II.173,II. 175,II. 197-98,11.268 

advantages over CMF, 11.65-66 
approximate limits for, 11.70 
bias in the ratio of, 11.72-75,II.92 
by years since first employed, 11.217-18 
comparison of 11.91-103 
confidence intervals for, 11.69-72 
testing for heterogeneity and trend in, 

11.96-97 
testing significance of, 11.68-69 
versus CMF, 11.72 

Standardized regression coefficient, 1.208 
Standardized residuals, 1.213 
Statistical inference, I. 124-29,1.206 

approximate methods of, 1.129 
see also Likelihood inference 

Statistical interaction, definition, 1.56 
Statistical modelling, advantages and 

limitations of, 11.120 
Stomach cancer, age-specific incidence rates, 

1.60,1.61 / 

STRAT program listing, 1.307-21 
Strata matching, 1.30-31 
Stratification, 1.89,1.105,1.111,1.122,1.225, 

I. 242 
see also Confounding, control of 

Stratification degree, 1.99-101 
Summary chi-squared test for combination of 

2 x 2 tables. See under Case-control 
studies; Cohort studies 

Summary measures 
of goodness-of-fit , 11.137-38 
of rates, 11.51-61 

Survival rates, 1.43 
Survival times, 11.131-32 

Tail probabilities, 1.27 
Time-dependent exposure categories, 

person-years allocation to, 11.82-86 
Time on study, 1.43 
Time relationships, 11.37-39 
Tobacco consumption, 11.43,11.46, 11.88, 

11.101,11.103 
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Tobacco consumption--contd. 
and mortality, 11.6 
and radiation exposure, 11.254 
in relation to lung cancer, I. 17,1.55,1.58, 

1.64, 1.66-69, 1.75, 1.86-93, I. 100, 
1.101, 1.104, 1.166,1.193, 11.5-9, 
11.15, 11.234-36, 11.261 

combined with asbestos exposure, 
1.66-68, 11.352-53 

in relation to oesophageal cancer, 1.154, 
I. 155,1.217-19,1.221,1.223-24, 
1.227-35, 11.266 

in relation to oral cancer, 1.66-69, 1.86, 
1.110 

Tonsillectomy and Hodgkin7s disease, 1.16, 
1.31 

Trend tests 
for exposure effect versus trend test for 

dose-response, 11.97-98 
see also under Case-control studies, 

chi-squared test statistic; Cohort 
studies, chi-squared test statistic 

2 x 2 table, I.126,1.14671.148,1.154,1.169 
approximate statistical inference for, 

I. 129-44 
combining results from, 1.136-56, 

1.210-13 
combining sets of, 1.268-70 
conditional distribution for, I. 125, I. 138 
conditional maximum likelihood estimate 

for, 1.127 
equivalence of odds ratio and relative risk, 

I. 70-72 
exact statistical inference, 1.124-29 
interaction in, 1.238-42 
odds ratio in, 1.248 

2 x K table, I. 146-54 
Two-sided significance level, I. 133 
Two-sided test, I. 128 

Unconditional analysis of matched data, bias 
arising from, 1.249-5 1 

Unconditional likelihood for logistic 
regression, 1.209, 1.253 

Unconditional likelihood function, I. 269 
Unconditional logistic regression, 1.269 

for large strata, I. 192-46 
Unconditional model, 1.269 
Unknown parameters, 1.125 
Unmatched analysis, 1.271-76 
Unmatched case-control studies, design 

considerations, 11.289-94, 11.302-4 
Unstratified analysis, I. 146-47 
Uranium miners, and lung cancer, 11.253-55 
Urinary tract tumour, 1.52,1.86 
US national death rates, 11.358-61 
Uterine bleeding, I. 104 
Uterine cancer, 1.27 

Vaginal adenocarcinoma, 1.89 

Weighted least squares regression, 1.60 
Welsh nickel refiners. See South Wales nickel 

refiners 
Woolf estimate. See Logit estimate 

Yates correction. See Continuity correction 


